当前位置:首页 > 模拟 > 模拟
[导读]于是人们选择所谓“数字基础”的D/A转换器。而用于数字D/A转换的方法有2种:PWM(P ulse Width Modulation)脉冲宽度调制和PDM(Pulse Density Modulation)脉冲密度调制。

1 引言

    在数字信号处理中,常常需要将多位数字信号转化为一位数字信号。例如,在通信领域,接收器接收到经过编码的数字语音信号,需将他转化为模拟信号,即将原来的模拟语音信号复原。经过编码的语音信号,通常是多位的比特流。因此,如何将多位比特流转化为模拟语音信号,便成为保证通信质量的关键。又如,在一些控制电路中,控制信号是经过计算生成的多位数字信号,而这些数字信号必须转化为模拟信号才能对电路进行控制。因此,如何将多位数字信号转化为符合实际要求的模拟信号,则成为控制电路设计者最关心的问题。

    在传统的电路设计中,面对上述问题时,通常选择使用由多个分离的电子元器件组成的D/A转换器,有时我们也称他为静态D/A转换器。但是由于静态D/A转换器的组成结构,决定了他在系统中,必须占用一定的空间及消耗一定量的功率。于是在那些要求携带方便的系统方案中,静态D/A转换器就不得不被替换掉[1]。

    于是人们选择所谓“数字基础”的D/A转换器。而用于数字D/A转换的方法有2种:PWM(P ulse Width Modulation)脉冲宽度调制和PDM(Pulse Density Modulation)脉冲密度调制。这种数字D/A转换器所占用的物理空间比较小,消耗的功率也比较小。因此,适用于对系统硬件大小以及功耗要求比较严格的系统[1]。

    早在20世纪40年代,PWM就开始被应用在电话中。由于PWM的局限性,人们在二十年后,提出了PDM调制方法。但由于当时的应用市场尚不成规模,因而这种调制方法一直未能得到广泛的关注和应用。近年来,由于数字技术在各个领域里得到了广泛的应用,数字产品飞速发展,数字信号处理开始得到越来越多的关注。于是PDM调制技术重新得到重视,并被应用在不同的领域中。

2 PDM基本介绍  

    PDM是一种在数字领域提供模拟信号的调制方法。在PDM信号中,逻辑“1”表示单个脉冲,逻辑“0”表示没有脉冲。通常逻辑“1”和逻辑“0”是不连续的,逻辑“1”比较均匀地分布在每个调制信号周期里。其中单个脉冲并不表示幅值,而一系列脉冲的密度才对应于模拟信号中的幅值。完全由“1”组成的PDM信号对应于幅值为正的电压;而完全由“0”组成的PDM信号则对应于负幅值的电压;由“1”和“0”交替组成的信号则对应于0幅值的电压。

3 PDM的实现

pdm调制技术的逻辑框图

    PDM调制技术的逻辑框图如图1所示。用1个分频计数器实现符合实际应用要求的时钟信号,脉冲周期为ΔT。再将时钟信号送入?N位计数器,实现0,1,…,2N-1的计数。在计数的单个脉冲周期ΔT里,将计数结果各个位上的逻辑值经过一系列逻辑操作,实现N位比较基准脉冲信号,分别为Bit0,Bit1,Bit2,…,Bit(N -1)。值得注意的是,在每一个ΔT里,都只有一个位上有逻辑“1”,其他位 上均为逻辑“0”。同时将寄存器输出的N位总线数据与比较基准脉冲信号Bit0,Bit1,Bit2,…,Bit(N-1)进行逐位与操作,再将各个位上的结果相或,便得到ΔT内的调 制结果。这样,在整个调 制周期结束后便得到调制结果。

    对于N位的数字信号,调制周期T=2N·ΔT。对于8位的数字待调信号,每个脉冲周期ΔT的调制结果为:    

每个脉冲周期δt的调制结果

    例如,对8位的十六进制数字信号“1AH”进行调制。用8位的计数器产生如图2所示的比较基准脉冲信号。显然,在每一个脉冲周期ΔT里,Bit0~Bit7中都只有1个位上有脉冲。  

比较基准脉冲信号

    而十六进制数“1AH”对应的二进制数为“00011010”,其中Bit4,Bit3,Bit1为“1”,其他各位均为“0”,经过逐位逻辑操作,即:

逐位逻辑操作

    经过一个调制周期的调制,便得到如图3所示的调制信号。这样8位的数字信号就转化为1位的脉冲信号。   
  调制信号

4 PDM与PWM的分析比较

    数字信号经过PDM调制后,经过一个简单的低通滤波器就可以实现数字信号的数模转换。为方便比较,在仿真中,设定:待调数字信号长度为2个字,分别为“1AH,A1H”。脉冲周期ΔT为1 ms,1个调制周期的时间为256 ms。

    在RC滤波电路中,选用不同的R,C值,对于调制结果的精度以及上升沿和下降沿的持续时间有很大的影响。

(1)RC=50·ΔT?

    图4所示的是“1AH,A1H”2个8位字用PDM调制后,经过RC滤波输出的模拟信号。其交流纹波较小,但信号响应的速度较慢,即信号变化的上升沿比较缓和。  

“1ah,a1h”2个8位字用pdm调制

    图5所示的是“1AH,A1H”2个8位字用PWM调制经过RC滤波后输出的模拟信号。显然其中的交流纹波成分比用PDM调制后的模拟信号要大的多。

“1ah,a1h”2个8位字用pwm调制经过rc滤波后输出的模拟信号

(2)RC=10·ΔT

2个8位字“1ah,a1h”用pdm调制经过rc滤波后输出的模拟信号

    图6所示的是在RC=10·ΔT时,2个8位字“1AH,A1H”用PDM调制经过RC滤波后输出的模拟信号,其交流纹波的幅值约为直流成分的20%,响应时间约为整个调制周期的7.5%。

    以上的仿真结果表明,相对于PWM调制信号,PDM的调制信号经过低通滤波器后,模拟信号中的交流成分得到了明显的削弱,即噪音相对较小。而对于PDM调制,RC滤波网络中的RC值越大,模拟信号中的交流成分越少,而响应速度则越慢。

    因此,合理选取R,C值,使得交流成分的大小和响应速度都能够满足实际应用的要求,这是系统设计的关键。

5 PDM的应用

    在近几年里,PDM技术广泛地应用于数字系统的各个领域中。在通信领域,许多通信工具中的语音信号还原都使用了PDM技术[2]。

    几乎所有CDMA手机中,都使用了PDM的专 利技术。在控制领域,许多控制单元如电源管理中PDM技术也有应用[2]。在音频 电子领域,PDM技术也得到了广泛的应用,如许多消费电子产品中的数字化麦克风[3] 。

    当然,PDM技术也有他的局限性。例如,当需要调制的数字信号位数增加时,调制周期 就 相应变长,滤波器的响应速度也相应变慢。而在应用于D/A转换的调制方法中,PDM技术无 疑是一种比较理想的调制方法。

参考文献

[1]Rishi?Pulse Density Modulation Based Digitaltoanalog Conversion?USpatent,1998,(6):67-317.P hilips Electronics North America Corporation(New York,NY
[2]Zhang Tao.Method and Device for Pulse Density Modulation?U S-patent 2001,(6):393573?Oki Techno Centre (Singapore) PteLtd
[3]Grosso A,Botti E,Stefani F,et al.A 250 W Audio Ampli fier with Straightforward Digital InputPWM Output Conversion

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭