当前位置:首页 > 模拟 > 模拟
[导读]嵌入式系统通常需要数模转换器 (DAC) 生成模拟电压与波形。DAC 有时用作嵌入式处理器的外置器件,有时集成至处理器中。无

    嵌入式系统通常需要数模转换器 (DAC) 生成模拟电压与波形。DAC 有时用作嵌入式处理器的外置器件,有时集成至处理器中。无论哪种情况,CPU 都必须在适当时间将预期输出值写入 DAC。一般情况下我们采用定时器中断 CPU写入预期值来实现上述目的。如果 DAC 必须生成周期波形,CPU须从表格写入下一个值,递增数据表指针 (table pointer),并且检查表格边界,以便确定何时复位数据表指针。

    将周期值写入 DAC 的过程要求 CPU 开销保持输出波形。所需要的 CPU 开销取决于数据表的长度、输出波形的频率以及 CPU 的工作频率。例如,为了每个周期采用 32 个数据点生成 1 个 1kHz 的正弦波,在 CPU 频率为 1MHz 情况下要求 CPU 每秒能够处理 32000 个中断信号。处理如此多的中断仅在中断之间留下 1000000 / 32000 = 31.25 个 CPU 指令周期。针对上下文切换与执行,如果每个中断服务只需要 15 个 CPU 周期,所需 CPU 开销就会达到近 50%。

    如果应用要求第二个模拟输出波形,那么 CPU 负载将会增大,甚至在所需的中断服务时间内不能更新两个 DAC。 MSP430F15x/16x 器件是解决该问题的良好方案。这些器件集成了两个 DAC 与 1 个 DMA 控制器。DMA 控制器的用途是在无需 CPU 干预情况下将数据从一个位置转移到另一个位置。在本例中,DMA 能够在规定时间内将数据从数据表转移到 2 个 DAC。数据转移结构图如下所示。 


  
    DMA 控制器具有三条独立的通道。每条通道在配置后都可以用于将数值在任何地址之间进行转移。因此,一个数据表可以同时用于正弦波与余弦波,而两条 DMA 通道只需存取数据表的不同部分,以便形成正弦与余弦输出。  

    此外,每条 DMA 通道都可以独立递增其源地址或目的地址。本例中,每条 DMA通道编程后递增其源地址,但目的地址不变,始终为其对应的 DAC 数据寄存器。

    DMA 传输次数也可以配置。在每条 DMA 通道传输完已编程数据值数量之后,即可以从最初编程的源地址开始进行下一次传输,从而使每条 DMA 通道都构成一个带数据表的环形缓冲区并生成周期波形。

    为移动数据值,每条 DMA 通道都需要一个触发器。本例中,来自每个 DAC 的中断标记用作其相应 DMA 通道的触发器。如果 2 条通道同时触发,则需要对DMA 通道进行优先排序,这样一来,会在其中一个接收数据的 DAC 中造成延迟,进而造成输出信号失真,因此应单独处理 DAC 更新。

    这些器件中的每个 DAC 都能通过定时器触发,这样在需要下一个 DAC 数据值之前就可以将其加载到 DAC 数据寄存器中,当定时器触发 DAC 时,每个 DAC均能输出新的值。本例中设置由 Timer_A1 输出信号触发每个 DAC。由于 2 个 DAC 采用相同的触发信号,因此每个 DAC 的输出波形相互同步,以便保持相应的正弦/余弦关系。

下面列出完整代码以及 2 个输出波形的示波器画面。
 
------------------------------------------------------------------------- #define FS_Val 4095


static int Sin_tab[40] = {
       0.500*FS_Val,
       0.598*FS_Val,
       0.691*FS_Val,
       0.778*FS_Val,
       0.854*FS_Val,
       0.916*FS_Val,
       0.962*FS_Val,
       0.990*FS_Val,
       1.000*FS_Val,
       0.990*FS_Val,
       0.962*FS_Val,
       0.916*FS_Val,
       0.854*FS_Val,
       0.778*FS_Val,
       0.691*FS_Val,
       0.598*FS_Val,
       0.500*FS_Val,
       0.402*FS_Val,
       0.309*FS_Val,
       0.222*FS_Val,
       0.146*FS_Val,
       0.084*FS_Val,
       0.038*FS_Val,
       0.010*FS_Val,
       0.000*FS_Val,
       0.010*FS_Val,
       0.038*FS_Val,
       0.084*FS_Val,
       0.146*FS_Val,
       0.222*FS_Val,
       0.309*FS_Val,
       0.402*FS_Val,
       0.500*FS_Val,
       0.598*FS_Val,
       0.691*FS_Val,
       0.778*FS_Val,
       0.854*FS_Val,
       0.916*FS_Val,
       0.962*FS_Val,
       0.990*FS_Val
};

void main(void)
{
  WDTCTL = WDTPW + WDTHOLD;             // Stop WDT
  ADC12CTL0 = REF2_5V + REFON;          // Internal 2.5V ref

//Setup DMA triggers for both DMA channels
  DMACTL0 = DMA0TSEL_5 + DMA1TSEL_5;    // DAC12IFG trigger

// Setup DMA0
  DMA0SA = (int) Sin_tab;               // Source block address
  DMA0DA = DAC12_0DAT_;                 // Destination single address
  DMA0SZ = 0x20;                        // Block size
  DMA0CTL = DMADT_4 + DMASRCINCR_3 + DMAEN; // Rpt single ch, inc src, word-word

//Setup DAC0    Load with Timer_A, group with DAC1
  DAC12_0CTL = DAC12LSEL_2 + DAC12IR + DAC12AMP_2 + DAC12IFG + DAC12ENC + DAC12GRP;

//Setup DMA1
  DMA1SA = (int) Sin_tab+8;             // Source block address
  DMA1DA = DAC12_1DAT_;                 // Destination single address
  DMA1SZ = 0x20;                        // Block size
  DMA1CTL = DMADT_4 + DMASRCINCR_3 + DMAEN; // Rpt single ch, inc src, word-word

//Setup DAC1   Load with Timer_A
  DAC12_1CTL = DAC12LSEL_2 + DAC12IR + DAC12AMP_2 + DAC12IFG + DAC12ENC;

//Setup Timer_A
  CCTL1 = OUTMOD_3;                     // CCR1 set/reset
  CCR1 = 1;                             // CCR1 PWM Duty Cycle    
  CCR0 = 3;                             // Clock period of CCR0
  TACTL = TASSEL_1 + MC_1;              // ACLK, upmode

//Turn Off CPU forever
  LPM3;

------------------------------------------------------------------------- 


    最后,每次 DMA 传输都会强行占用 2 个 CPU 时钟周期。虽然 CPU 并不用于传输操作,但时钟周期的占用会造成必要的 CPU 开销且大于零。不过,对于 1kHz 的正弦波来说,假设有 32 个数据点,第 31.25个数据点之外的 2 个周期仅需要 6.4%的开销,相比之下不使用 DMA 时开销达到近 50%。另外,产生 2 个波形只需要 4个周期或 7.8% 的开销,而在不使用 DMA 时几乎不可能产生 2 个 1kHz 正弦波

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭