当前位置:首页 > 模拟 > 模拟
[导读]借助系统的零、极点分析研究了系统的稳定性。介绍了系统稳定性的概念、充分必要条件及判断方法。重点介绍了判断系统稳定性的方法,并举例说明了该方法在判断自动控制系统的稳定性及如何适当选取系统参数等的应用。

1 引言
    线性时不变(Linear Time Invariant,简称LTI)系统指满足叠加性与均匀性、参数不随时间改变的系统。所谓稳定系统指如果系统受到有界扰动,无论它的初始偏差有多大,当扰动取消后.都能以足够的准确度恢复到初始的平衡状态。稳定性是系统自身的性质之一,它在宇宙航行、导弹制导等自动控制系统中是一个重要的性能指标。为了实现自动控制的基本任务。系统必须满足稳定性。然而,系统是否稳定,与激励信号的情况无关。通常,系统在激励作用下的响应r(t)可分为瞬态响应rtt和稳态响应rss。前者,表示系统在激励作用下的通解.是系统齐次微分方程的解,只与系统本身的参数有关,而与激励和初始条件无关;后者,表示系统在激励作用下的特解,与激励和初始条件有关。系统的冲击响应h(t)或系统函数H(s)集中表征了系统的本性,当然它们也反映了系统是否稳定。因此,研究系统的稳定性,可从时域或频域两个方面进行。


2 系统稳定的充要条件
2.1 频域充要条件
   
频域指复频域即s域。从频域考虑,线性控制系统的稳定充要条件是H(s)的所有极点,即系统的特征方程根都具有负实部,或者说都位于s的左半平面。这相当于系统的冲击响应满足:

   
    如果特征方程根中任一根为正,即位于s的右半平面,它所对应的指数项将随时间而单调增长,整个系统因此而不稳定。同样,具有正实部的共轭复根所对应的瞬态响应是发散的正弦振荡。如果共轭复根位于s平面的虚轴上,则对应的瞬态响应为等幅正弦振荡。应当说明,等幅振荡的线性系统实际上是不存在的,而发散过程的系统,也并不意味着输出量会无限增大。实际控制系统的输出量只能增大到一定的范围,超出此范围或者受到机械止动装置的限制,或者系统遭到破坏,或者其运动形态超出线性理论所研究的范围而进入非线性工作状态,以致产生等幅振荡。
2.2 时域充要条件
   
从时域考虑,稳定系统的另一种定义方式是:若系统对任意的有界输入,其零状态响应也是有界的,则称该系统为稳定系统,也称之为有界输入和有界输出(BIBO)稳定系统。
上述定义的数学表达式为:

   
式中:e(t)为对激励信号;r(t)为响应信号;Me和Mr为有界正值。
    当所有的e(t)满足式(2)时,r(t)亦满足式(3),此时称该系统是稳定的。若按该定义逐个检验各种可能的e(t)满足式(2)和式(3)判断系统稳定性将过于繁琐。为此,推导出稳定系统的充要条件为:

   
式中:M为有界正值;h(t)为冲激响应信号。
    如果h(t)是绝对可积的,则系统稳定。


3 系统稳定性的判断
   
根据稳定概念和稳定的充要条件,介绍两种判断系统稳定性的频域及时域的方法。
3.1 根据H(s)在s平面的极点分布来判断
   
该方法属于频域判断法。对于因果系统,观察在时间t→∞时,h(t)是增长,还是趋于有限值或者消失,既可确定系统的稳定性。研究H(s)在s平面中的极点分布位置,可方便地给出有关稳定性的结论。按H(s)在s平面中的极点分布位置,因果系统可划分为稳定系统、不稳定系统、临界稳定系统3种情况。
    (1)稳定系统若H(s)的全部极点均落于s的左半平面(不含虚轴),则可满足lim[h(t)]=0,此时系统是稳定的。
    (2)不稳定系统 若H(s)的极点落于s的右半平面或在虚轴上具有二阶以上极点,经足够长时间后h(t)仍在继续增长,系统是不稳定的。
    (3)临界情况 若H(s)的极点落于s的平面虚轴上.且只有一阶,则经足够长时间后,h(t)趋于一个非零的数值或等幅振荡,而处于上述两种类型的临界情况,与(2)一起列为不稳定系统。
    在此,以图1所示控制系统为例,说明如何利用H(s)在s平面的极点分布来讨论该系统中当K从0增长时系统稳定性的变化。求得极点位置为:

    当K=0,pl=一2,p2=+l时,有一个极点在右半平面;当K=2,pl=一l,p2=0时,有一个极点在虚轴上;当K=9/4.pl=p2—1/2时,极点都位于左半平面上。事实上,当K>2时,计算出极点或极点的实部都位于左半平面,即K>9/4有共轭复数。因此.K>2的系统稳定,K≤系统不稳定。K增长时,极点在s平面的移动过程如图2所示。

3.2 劳斯判据
   
设系统函数为H(s),则系统稳定的必要条件是H(s)的分母多项式,即:

   
    式(6)的全部系数非零且均为正实数。对三阶系统.其充要条件是D(s)的各项系数全为正,且满足a1a2-a0a3>0
3.3 BIBO稳定性判据
    BIBO判据指用BIBO稳定性来判断。在讨论时域充要条件时,并未涉及系统的因果性,这表明无论因果稳定系统或非因果稳定系统只要满足式(5)的条件,都可判断这些系统是稳定的。然而对因果系统,式(5)可改写为:

   
    对于因果系统,从BIBO稳定性定义考虑与考察H(s)极点分布来判断稳定性具有统一结果。当H(s)极点位于左半平面时,h(t)绝对可积,系统稳定;当H(s)绝对位于右半平面或在虚轴具有二阶以上极点时,h(t)不满足绝对可积条件。系统不稳定。当H(s)极点位于虚轴且只有一阶时称为临界稳定系统,则h(t)处于不满足绝对可积的临界状况,从BIBO判据来看,这种情况仍属于不稳定范围。


4 结语
   
任何系统要能正常工作,都必须以系统稳定为先决条件.所以判断系统的稳定与否十分重要,它能指导系统设计合理地选择元件参数。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭