当前位置:首页 > 模拟 > 模拟
[导读]在摄像机自标定过程中,可根据Harris的检测算法提取对角点。该算法简单有效,非常稳定。在图像旋转、灰度、噪声影响和视点变换的条件下,与其他算子相比,是最稳定的一种点特征提取算子。为了获得亚像素级的角点坐标,需要引入迭代算法进行优化。试验证明该方法可大幅度提高摄像机的标定精度。

1 引言
    基于单平面模板摄像机自标定是当前应用比较广泛的摄像机标定方法,只需要摄像机从不同方向拍摄3幅用于标定的图像(棋盘格),提取出其中的角点,根据其与平面模板间的关系,确定单应性矩阵,便可以计算出摄像机的全部内参数。其优点是操作简便并且无需知道模板的运动情况。但这种标定方法要求标定图像非常平整,而且要求角点清晰易分辨。无形中就约束了激光打印机的精度。而准确提取标定板上特征点的坐标是这种自标定中最为关键的一步,直接关系到标定结果的精确度。为解决这一问题,提出利用Harris算法提取出角点后,再将其坐标精确到亚像素级,以提高标定的精度。


2 基于Harris算法的角点提取
    Harris算子是Harris和Stephens在1988年提出的一种基于静止图像的点特征提取算子。这种算子受信号处理中自相关函数的启发,给出与自相关函数相联系的矩阵。矩阵的特征值是自相关函数的一阶曲率,对图像中的任意一点,如果它的水平曲率和垂直曲率值都高于局部邻域中其他点,则认为该点是特征点。它计算简单有效同时非常稳定,在图像旋转、灰度、噪声影响和视点变换的条件下,与其他算子相比是最稳定的一种点特征提取算子。Harris算子定义为:

   
式中:其中gx为x方向的梯度,gy为y方向的梯度,G(s)为高斯模板,⊕为卷积操作,I为每点的兴趣值;det为矩阵的行列式;tr为矩阵的迹;k为经验值,一般取0.04。
    Harris算子在摄像机标定图像的使用方法:首先计算图像中的每个点在横向和纵向的一阶导数以及它们的乘积。从而得到3幅新的图像。这3幅图像中的每个像素对应的属性值分别为gx,gy和gxgy。然后运用高斯滤波处理这3幅图像,接着计算原图像上对应的每个点的兴趣值。计算完各点的兴趣值后,要提取出原始图像中的所有局部兴趣值最大的点,即依次取出每个像素的8邻域中的每个像素,从这些像素中找出兴趣值最大者。特征点就是中心点像素的兴趣值为最大的点。
    用公式提取特征点时,只要像素点的兴趣值大于某一阈值T的点均可被认为是特征点。但T不具有直观的物理意义,其具体值难以确定。所以在实际操作中应采取间接确定T的方法:通过确定图像中所能提取的最大可能的特征点数目N来选择兴趣值最大的若干像素点作为特征点。局部极值点的数目可能会很多,根据兴趣值进行排序后,取其前N个点为特征点。

3 精确角点坐标至亚像素级
   
对于棋盘格图像如图1所示,角点附近的点可分为在边缘上的点和不在边缘上的点两类。B点上的梯度方向与OB垂直,而A点处灰度梯度为零,可见在角点O附近点的灰度梯度均垂直于该点与角点的连线。

    用数学式可表达如下:

   
式中:为灰度梯度向量,为图像原点指向O点的坐标,为图像原点指向第i点的坐标。
    实际图像可能受到噪声的影响,故一般情况下式(1)不为0。设误差为θ,即:

   
    在以角点为中心的某一邻域内,对所有点按式(2)计算,误差和为S,则有:

   
    故求角点准确位置的问题转化为求使误差和S最小的点的问题。该问题可用迭代的方法优化求解,对式(1)两端同时乘以得:

   
    将角点邻域内所有点分别代入式(4)。把所有结果求和,可得出:


    这样就得到了角点O的迭代式,通过对初始Harris角点进行一定级数的迭代优化,可以得到其更精确的坐标位置。

4 自标定算法
    自标定算法采用张正友标定法,其大致过程如下:
    (1)坐标系变换

   
    由此式(8)可完成从摄像机坐标系到图像坐标系的变换,其中A包含摄像机的全部6个内参数,f为摄像机焦距,θ为摄像机坐标系的偏斜度,像素点的大小为k×l,单位为mm,图像坐标系的原点位于(u0,v0)上。
    摄像机坐标系和世界坐标系的关系为:

   
    式中:R3×3为旋转矩阵,t3×1为平移向量。
    由式(7)和式(9)可得从世界坐标系到图像坐标系的一个线形变换:km3×1=A(R3×3,t3x1)M3×1,其中m3×1为图像点的齐次坐标,M3×1为三维空间点的齐次坐标,为比例系数。
    (2)计算透视投影矩 令H=λA(R,t),其中λ为比例系数,H为透视投影矩阵,可通过已知的一系列二维、三维点对获得,即将所有对应点对(角点)的Mahalanobis距离标函数,利用最大似然估计的方法获取当Mahalanobis距离取到最小值时的H矩阵。
    (3)摄像机参数的获取设标定板放在世界坐标系的Z=0平面内,可得到只包含两个列向量的旋转矩阵,再由所选坐标系为笛卡儿坐标系,可得到关于矩阵A的两个约束条件,这样便可求出透视投影矩阵,再由式H=λA(R,t),可得到摄像机的全部内参数。
    (4)径向畸变的矫正 由畸变模型为:

   
式中:(x,y)原图像坐标,(x,y)为校正后图像坐标,k1,k2为径向畸变系数,由Levenberg-Marquardt算法实现非线性优化校正过程。

5 标定实验
   
标定板采用一幅7×7(角点数)的棋盘图,每格边长的实际大小分别为22.35 mm,拍得的照片大小为736×454(图2),其实验结果如表1,表2所列。实验结果表明标定精度有了大幅度的提高。

6 结语
   
提出了对于摄像头自标定这种方便的标定方法,可以利用提取角点后,再对其经过亚像素级定位,从而提高标定精度。该方法简单易实现,经实验证明具有很好的效果,解决了传统自标定算法中对标定板要求高的问题。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭