当前位置:首页 > 模拟 > 模拟
[导读]为了实时获取生产线上大量按键并发动作状态,提出一种基于FPGA的多按键状态识别系统设计。该系统设计采用VHDL语言描述,有效地解决远距离、分散、多键并发状态识别问题,并减小电路板面积和单片机的信号连接,易于对大量按键并发输入操作。给出了该系统设计方案的硬件电路设计和仿真结果。该设计已成功应用于某项目中。

1 引言
   
按键作为普通的输入外设,在仪器仪表工业设备和家用电器中得到广泛应用。目前,按键输入电路Ⅲ主要有2种:一种是非扫描方式可以判断多键状态(允许多键同时动作),但是不适用于大量按键情况,所需I/0端口多;另一种是扫描阵列方式,适用于大量按键,但不能多键同时动作。因此,需要开发一种既适合大量按键又适合多键同时动作,并能节省单片机(MCU)的口线资源的多按键状态识别系统。这里提出一种利用FPGA的I/0端口数多和可编程的特点,采用VHDL语言的多按键状态识别系统,实现识别60个按键自由操作,并简化MCU的控制信号。

2 系统设计方案
    FPGA是一种可编程逻辑器件,它具有良好性能、极高的密度和极大的灵活性,外围电路简单可靠等特性。因此,该系统设计是由MCU、FPGA、按键等部分组成。60路按键信号进入FPGA单元,以供数据采集;FPGA处理采集到的数据信号,编码后写入内部FIFO。MCU通过I/O端口提取FIFO中的数据。模块通过电源接口向各个部分供电。其系统设计原理框图如图l所示。

2.1 FPGA配置电路
    FPGA采用Altera公司EPF10K30ATC144,该器件内核采用3.3 V供电,端口电压为3.3V可承受5 V输入高电平,其工作频率高达100 MHz;有102个可用I/0端口,每个端口输入电流最高达25 mA,输出电流达25 mA;l728个逻辑单元(Les),12 288 bit的用户Flash存储器,可满足用户小容量信息存储,完全满足系统设计要求。
    由于FPGA基于RAM工艺技术,该器件丁作前需要从外部加载配置数据,需要一个外置存储器保存信息,采用可编程的串行配置器件EPC2.其供电电压为3.3 V。OE和nCS引脚具有内部用户可配置上拉电阻。FPGA的DCLK、DATA0、nCONFIG引脚信号均来自EPC2。系统上电后,首先FPGA初始化,nSTATUS、CONF_DONE置为低电平。nSTATUS置为低电平后复位,此时EPC2的nCE为低电平,因此选取EPC2,从而数据流从DATA引脚输入到FPGA的DATAO引脚。配置完成后,FPGA将CONF_DONE置为高电平,而EPC2将DATA引脚置为高阻态。其FPGA配置电路如图2所示。

2.2 按键电路
   
图3为一路按键电路,共60个按键(i=1~60)。由于外界环境复杂,按键引线长达6 m,保护二极管VDi:在外界干扰信号大于VCC时导通起到保护FPGA的作用。电阻Ri上拉限流,按键未闭合状态下FPGA输入引脚始终处于高电平。
3 FPGA内部逻辑设计FPGA内部功能分为扫描模块、编码模块、控制模块以及同步FIFO RAM模块,如图4所示。

    图4中,K1~K60为60个按键的输入端,Scan为工作模式选择信号,Ready为读准备好信号,RdClk为读时钟信号,Data[7:0]为数据输出,ModCtr为编码模式控制信号,FIFOWEn为FIFO RAM写使能信号,FIFOIn为FIFO RAM数据输入,State为按键状态扫描信号。其工作原理为:扫描模块周期扫描按键状态,其结果送入编码模块;编码模块根据模式控制信号ModCtr选择编码方式编码,将其结果送入FIFO RAM;控制模块产生对FIFO RAM的读取控制信号;MCU可通过Readv、RdClk控制信号读取Data[7:0]数据线上的按键编号和状态数据。
3.1 扫描模块
   
扫描模块主要完成扫描按键状态输入和按键的软件去抖动。扫描按键状态输入是以5 m8为周期扫描60个输入引脚,将其结果存入60个两位状态移位寄存器。其代码为:


    按键去抖有硬件和软件2种实现方式。为了节省成本,充分发挥FPGA器件的功能,该系统设计采用软件去抖。图5为软件去抖动流程。图中State为2位状态移位寄存器,初始值为0,TimeDelay为延时计数器。

    软件去抖动过程说明:对状态寄存器的2位数值做异或运算,即m=State_1 Xor State_2。若m=l,说明按键有动作,则令TimeDelay=1,启动延时计数;若m=O,表明按键处于去抖延时或者平稳状态。这时判断TimeDelay,若TimeDelay=0,则按键处于平稳状态;若0<TimeDelay<MaxDelay(最大延时设定值),则说明处于去抖计数中,TimeDelay继续加1,当TimeDelav>MaxDelay时说明按键已经平稳,将结果送入编码器模块。软件去抖关键代码如下:


3.2 编码模块
   
以0、l表示按键通断状态,60个按键则需要8个字节;在实际中单键动作的概率远远大于多键同时动作的概率,若只对状态发生变化的按键以8位编码方式传输按键信息,则一个按键只需传送一个字节,因此为尽可能地减少MCU的负担,提高实时性,设计为只在按键发生状态变化时才向MCU传输相应按键的编号和状态数据。其编码数据格式如图6所示。

    状态位lbit,0表示按键闭合状态,1表示按键打开;数据6bits,即0X01~OX3C分别表示1~60个按键;lbit偶校验位。这样传输一次数据就可完成按键编号和状态的传输。
    编码器采用连续和随机2种工作模式。连续工作模式每次扫描后对所有按键依次编码,并获取所有按键的当前状态;而随机工作模式在每次扫描后只对状态发生变化的按键编码。
3.3 控制模块
   
控制模块完成MCU与FPGA之间的功能控制,有2个作用:一是根据Scan信号选择编码模块的工作模式,二是产生FIFO RAM的读取操作时序。
    对于模式控制,Scan上升沿触发控制模块,使编码模块进入连续工作模式,扫描完成一周,控制模块发送控制信号使编码模块进入随机工作模式。
    对于读取数据,控制模块根据FIFO RAM的Data[7:0]是否有数据,置位Ready信号。有数据,Ready为低电平;无数据,Ready为高电平。RdClk为读取时钟,相当于确认信号,每读完一个数据,发送一个脉冲。
3.4 FIFORAM模块
    与MCU通信的接口种类很多,可选择串口、I2C、并口等形式,应用中可根据MCU资源以及项目成本、进度等具体情况选择最合适的一种方式。该系统设计利用同步FIF0 RAM并口传输。FIF0 RAM模块采用EDA软件库中的标准模块。


4 仿真结果
   
采用Altera公司提供的Quartus II仿真工具,其集成有与硬件实时操作相吻合的硬件测试工具。综合仿真结果如图7所示,系统时钟SysClk为12 kHz,其仿真结果表明系统设计达到要求。

5 结论 
   
提出基于FPGA器件,VHDL语言描述的特殊键盘设计方案解决远距离、分散、多键动作状态识别问题,极大节省PCB面积和MCU的I/0端口资源。模块中扫描延迟、扫描间隔等参数可根据系统需求灵活改变,FPGA器件使得电路功能的扩展方便,具有极高稳定性和灵活性。这一方案已在实际项目中应用,经现场验证性能稳定可靠。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭