Sobel边缘检测的FPGA实现
扫描二维码
随时随地手机看文章
随着设计复杂度的增加,使用IP核已经成为一种常用的设计方法。QuartusⅡ软件提供的Megafunt-tions是基于Altera底层硬件结构最合理的成熟应用模块,在代码中使用Megafunctions这类IP资源,不但能将设计者从繁琐的代码编写中解脱出来,更重要的是,在大多数情况下Megafunctions的综合和实现结果比用户编写的代码更优。而且只需要简单地设置选取宏功能模块的相关参数就可以在程序中调用它们,因此宏功能模块的使用也十分方便。QuartusⅡ的Mega-functins中包含有算术运算(Arithmetic)、逻辑门(Gates)、I/O、存贮器(Storage)等四个系列,可以根据系统设计需求灵活选用。
在实时图像处理中,用Sobel算子进行物体的边缘检测是经常用到的算法,由于对处理速度要求较高,因此用纯软件的方法很难达到要求。而FPGA对同时可完成的处理任务几乎没有限制,适合高速、并行信号处理,并且FPGA密度高、容量大,有内置存储器、容易实现,所以FPGA广泛用于实时图像处理系统中。
在此通过调用基于RAM的移位寄存器altshifttaps、可编程乘加器altmult add、可编程多路并行加法器parallel_add和参数化绝对值运算模块lpm_abs,实现了基于FPGA的Sobel边缘检测。最后给出设计系统的仿真结果,通过与Matlab仿真结果相比较,可以看出该设计获得了很好的边缘检测效果。
1 Sobel边缘检测算法
图1给出了Sobel边缘检测算法框图。从图中可以看出对一副图像进行Sobel边缘检测时首先要利用Sobel算子计算出水平梯度和垂直梯度,然后再把两个方向的梯度结合起来,最后应用门限处理模块判断图像边缘并输出边缘检测结果。
图2(a)为一副图像的3×3区域,图2(b)和图2(c)分别为Sobel算子的x方向(垂直方向)梯度算子和y方向(水平方向)梯度算子。当采用Sobel算子对图2(a)所示的3×3区域做梯度计算时,可得标记为z5的像素点x方向梯度和y方向的梯度分量分别为:
梯度的计算需要Gx,Gy这两个分量按公式联合使用。然而实际执行时,为了运算方便可以采用公式f△|Gx|+|Gy|对梯度进行近似。
该设计在门限处理时,采用基本全局门限:当某像素点(x,y)的梯度值XXXXf(x,y)大于或等于设定的门限T时,规定该点的灰度值为255,反之则为0。即:
2 Sobel边缘检测的硬件实现
根据图1所示的Sobel边缘检测算法框图,可得FPGA硬件实现Sobel边缘检测时应该包含梯度计算模块和门限处理模块。此外在硬件实现时还要采用图像数据缓冲模块对图像做缓冲处理,以便进一步对图像数据做模板处理。门限处理模块可以通过编写VerilogHDL代码实现。以下主要介绍图像数据缓冲模块和梯度计算模块。
2.1 图像数据缓冲模块器
在图像的空域滤波中,为了得到3×3的方形模板窗,常使用FIFO(First In First Out)模块作为图像数据的缓冲器。这里通过应用基于RAM的移位寄存器宏模块altshift taps实现了同样的功能,而且还省去了一些控制信号,使用十分方便。
altshift_taps宏功能模块是一个可配置的、具有抽头(Taps)输出的移位寄存器,每个抽头在移位寄存器链的指定位置输出数据。图3(a)和图3(b)分别为定制的8位输入/8位输出、3抽头,且相邻两个抽头相距256个寄存器的altshift_taps0功能模块及其内部寄存器链结构图,图3(b)中的Buffer0,Buffer1,Buffer2分别为由256个8位移位寄存器构成的寄存器链。当图像的第N行数据在像素时钟同步下从shiftin[7:0]端输入到altshift_taps0的Buffer0后,随着第N+1行图像数据输入到Buffer0中,第N行的图像数据依次存入Buffer1中,而当第N十2行图像数据存入Buffer0后,Buffer1和Buffer2中分别存放的是第N+1行和第N行的图像数据,从而实现缓冲图像数据的功能。这样在像素时钟的同步下,第N+2,N+1,N行的同一列数据分别从tap0x[7:0],taplx[7:0],tap2x[7:0]端输出给梯度计算模块,进行梯度计算。
2.2 梯度计算模块
Sobel边缘检测中,图像像素点梯度的计算可由So-bel算子与图像像素卷积运算的输出经梯度计算公式计算获得。图5是图4所示的3×3空间滤波模板与图2(a)所示的3×3图像区域卷积运算的原理图。从中可以看出,为了实现卷积运算需要做乘法和加法运算,之前的文献中大都采用分立的D触发器和加法器以及乘法器来完成卷积运算,它的结构复杂。在此采用可编程乘加器altmult_add模块和可编程多路并行加法器par-allel_add模块实现卷积运算,大大简化了设计。
可编程乘加器altmult_and可以接收多组数据输入,各组数据相乘后相加或相减作为结果输出。而且altmult_add在使用时可以根据需要设置乘法器个数、输入/输出数据格式、流水线控制时钟等参数,同时它还支持输入数据内部移位功能。
使用可编程多路并行加法器parallel_add模块时,用户可以自由设计输入数据位宽,累加数据个数,定义累加输入数据类型,模块最终自动生成适当位宽的数据输出。而且使用parallel_add模块做加法运算时,可以通过指定时钟延时以实现流水线设计,从而改善电路的性能,提高整个系统的工作频率。
图6为实现梯度计算而定制的altmult_add0模块,该乘加器包含3个乘法器,1个加法器而且为了改善电路的性能和提高系统的工作频率,在该模块中使用了寄存器。同时由于该模块使用了数据的内部移位功能,当某行的图像数据从dataa_0[7:0]依次输入时,经过3个时钟周期后,相邻的3个数据分别与固定的模板系数datab_0,datab_1,datab_2相乘,并将结果送给加法器完成加法运算。当采用三个这样类似的altmult_add模块并联时,便可实现卷积运算,而当卷积模板采用Sobel算子时,就可以获得像素点的水平梯度和垂直梯度。
在获得Gx和Gy后,还要通过公式才可以计算出对应像素点的梯度值。设计中可以使用QuartusⅡ提供的lpm_abs宏功能模块完成绝对值的计算。
图7为3×3图像区域,图8是基于altmult_add模块、parallel_add模块和lpm_abs模块构建的梯度计算模块对进行Sobel算子处理的QuartusⅡ仿真结果。由于采用了流水线设计,在第7个时钟的上升沿从Gx端,Gy端分别输出有效的x方向和y方向梯度值,并在第9个时钟的上升沿从Gf端输出图7的中心像素点的梯度,这个仿真结果与利用公式计算出的梯度值完全相同。
3 仿真结果
为了更加直观地验证该系统的边缘检测效果,在系统功能验证时采用Matlab和Modelsim进行混合仿真,仿真结果如图9所示。图9(a)为一幅256×256的原始图像,图9(b)为设定门限T为125的Matlab程序对原始图像的Sobel边缘检测结果。图9(c)为该设计的Sobel边缘检测结果。比较图9(b)和图9(c),可以看出该设计得到的结果几乎与Matlab的仿真结果完全一样,即该设计取得了很好的边缘检测效果。
4 结 语
该设计利用QuartusⅡ软件提供的可编程乘加器altmult_add模块、可编程多路并行加法器parallel_add模块和绝对值计算模块lpm_abs,及使用VerilogHDL设计的门限处理模块和其他相应的控制模块,完成基于FPGA的Sobel边缘检测的硬件设计。该方法既避免了自己编写大量程序代码的繁琐,又获得很好的综合和实现结果。最后通过与Matlab的仿真结果相比较证明了本设计可以有效地实现Sobel边缘检测。