基于HyperLynx的高速PECL交流耦合时钟
扫描二维码
随时随地手机看文章
引言
随着电子技术的不断发展,数据的传输速度越来越快,高速时钟的应用日益广泛,如何保证时钟在高速跳变过程中的信号完整性、抖动、功耗等问题,已逐渐成为关注的问题。传统的时钟设计方法大多依靠经验和理论计算,但是随着时钟频率越来越高,时钟的电磁环境日趋复杂,时钟的传输线效应、过冲/欠冲、反射、振铃效应、趋肤效应都成为影响时钟设计的关键因素,只有使用现代科技手段,利用计算机的强大计算能力进行仿真才能够保证时钟电路设计成功。 HyperLynx是Mentor(Graphics开发的一款板级信号完整性的仿真工具。它可以进行损耗传输线的精确仿真,支持IBIS模型和HSPICE模型,可以使用过孔模型,允许多种激励源,可以分析信号的眼图、抖动以及EMC(电磁兼容性)辐射,用户界面简单直观。
在目前的高速时钟的电平标准中,PECL(正电压射极耦合逻辑)是应用较广泛的一种,绝大多数高速ADC(A/D转换器)、DAc(D/A转换器)器件都支持这一时钟电平。本文叙述。PECL的原理和常见端接方式,结合在ADc系统中的应用,使用HyperLynx工具对设计后的电路进行仿真以验证设计思想。
l PECL工作原理
PECL由EcL(射极耦合逻辑)标准发展而来,在PECL电路中省去了负电源,较EcL电路更便于使用。PECL信号的摆幅相对EcL要小,这使得该逻辑更适合于高速数据的串行或并行连接。
一个标准的PECL输出极如图1所示。
差分对管的射极通过电流源连接到地,差分对管驱动一对射随器以提供正、负输出。输出射随器工作在正电源范围内,其电流始终存在,这样有利于提高开关速度。LVPECL(低电压。PECL)输出极的标准输出负载是接50 Ω电阻至Vcc一2 V的电平,在这种负载条件下,由于射随器的基极一射极有0.7 V压降,故输出+与输出一的静态电平典型值为Vcc一1.3 V,0.7 V压降加在50 Ω终端电阻上的电流为14 mA,可知输出+与输出一电流为14 mA。PECL结构的输出阻抗典型值为4 Ω~5 Ω,表明它有很强的驱动能力。2时钟电路设计
下面根据具体应用进行设计。首先从时钟的发送端(输出)和接收端(输入)各自的特性着手进行设计。
2.1时钟输出结构
时钟输出端由时钟扇出芯片ICS853011的一对输出引脚担任。ICS853011是一款将任意差分时钟扇出为两路PEcL电平的时钟扇出芯片,其原理见图2。
当其供电电压为3.3 V时,其输出电气特性如表l所示,输出高电平在2.295 V左右,输出低电平在1.52 V左右,输出峰峰值约为800 mV。
ADS5463的时钟输入特性如图3所示。
3电路仿真
下面打开HyperLynx,将上述电路导入其中的LineSim工具下,该工具是HyperLynx的一个子工具,主要用来进行传输线的拓扑结构的仿真,可以对不同端接方式下的信号完整性进行分析。LineSim中的传输线模型构筑如图5所示。
输入激励设置为.500 MHz、占空比为50的时钟源,在LineSim的数字示波器的仿真结果窗口中显示的波形如图6和图7所示。
消除振铃现象的方法有降低系统时钟频率、缩短传输线长度、采用正确的端接方式3种。由于本系统的时钟频率是固定的,而传输线长度又由PCB(印制电路板)的物理布局所限定,故只有采用正确的端接方式最为经济灵活。常见的端接方式有源匹配和负载匹配,下面介绍这两种方法的原理。
源匹配要求为输出端串联一个电阻,使源阻抗R。等于线路阻抗Z。,串联后,源反射系数等于0,从而消除了负载上的反射信号。换言之,串联的电阻吸收了发射的信号。本电路改进后如图8所示,在输出端串联了一个的电阻Rs,Rs=z0一R0=50-4=46 Ω,串联后的接收端波形见图9。从图9可看出,串联一个电阻后,接收端的波形得到了很大改善。但是这种方式稍微减小了接收波形的幅度值。但总的来说,信号还在ADC的接受范围内,不会对ADC性能有较大影响。
|
,以消除反射,在这里采用交流负载匹配,即由一个电阻RL串联一个电容CL然后并联到原接收端负载上,这样相比单接一个电阻最大的好处是可以降低直流功耗。改进的电路如图10所示。
4结束语
在高速时钟电路的设计中,信号完整性问题一直是困扰设计人员的问题,本文提出的PECIL高速时钟设计是在ADC设计中成功与否的关键因素。通过HyperLynx仿真,可以在最大程度上避免设计中的信号完整性问题。本时钟设计已在PcB实物上得到验证,取得了与仿真一致的效果,证明使用HyperLynx辅助设计人员进行关键时钟路径的设计是可行的。