当前位置:首页 > 模拟 > 模拟
[导读]A change in the forward voltage (VF) for a string of series-connected, high-brightness LEDs (HB LEDs) can indicate deterioration or complete failure of one or more of the LEDs. Accordingly, this circu

A change in the forward voltage (VF) for a string of series-connected, high-brightness LEDs (HB LEDs) can indicate deterioration or complete failure of one or more of the LEDs. Accordingly, this circuit assesses the LED's health by monitoring VF.
The forward voltage (VF) of high-brightness LEDs (HB LEDs) is often monitored to assess the health of the LED. Big changes in VF can indicate deterioration or even a complete failure of one or more LEDs connected in series.

For several LEDs in series, the sum of their VF voltages can go to 40V or more, and if not referenced to ground, that VF sum requires a differential measurement. As a third challenge (in addition to high voltage and differential measurement), HBLEDs are often dimmed using pulse-width modulation (PWM). If so, you can't measure VF during the low portion of the PWM duty cycle, when the LEDs are not illuminated and VF is not present. For a hysteretic buck LED driver (MAX16820) driving three LEDs in series (Figure 1), you must measure the anode and cathode voltages of the string when DIM is high.


Figure 1. Standard driver circuit for HB LEDs.

To avoid the need for a differential high-voltage measurement, you can take the indirect approach of measuring the duty cycle at the DRV pin. For this particular LED driver, a first-order estimate of forward voltage for the LED string is VF = D × VIN, where D represents an internal duty cycle produced in the IC's switchmode section (not to be confused with the duty cycle at DIM). The DRV signal is referenced to ground and limited to VCC (5V). That condition allows the use of low voltage ADCs or comparators, which in turn can be powered by the LED driver's VCC output (10mA maximum).

Figure 2 shows how to detect a short-circuited LED with the aid of a comparator (MAX9141). Filter R1C1 converts the AC PWM signal at DRV to a DC voltage (VD) proportional to D × VCC. VD should be sampled when its value is greater than (perhaps) 90% of its steady-state value, which requires a period of at least 2.3R1C1. Because the comparator's Latch Enable (LE) latches the output when LE is low, LE should assert not earlier than 2.3R1C1 after DIM goes high. R2C2 in combination with D2 ensures that LE de-asserts immediately after DIM goes low. The R2C2 value is higher than R1C1, so the comparator enables when the input signal reaches at least 90% of its steady-state value. D2 discharges C2 immediately after DIM goes low, which latches the output as soon as the LEDs go off.


Figure 2. Adding this comparator circuit to the Figure 1 circuit provides detection of shorted LEDs.

Because Ref is lower than D × VIN, the comparator output is normally low. If an LED fails shorted, its forward voltage drops and causes the duty cycle at DRV to drop. VD then drops below Ref, causing the comparator output to go high, indicating a shorted LED. Because the output latches when DIM goes low, the error signal remains asserted even when the LEDs are off. Figure 3 shows the filtered DIM and DRV signals for normal operation vs. a shorted-LED condition.


Figure 3. For the Figure 2 circuit with three LEDs in series and a 200Hz DIM signal with 5% duty cycle, these graphs show the filtered DRV signal VD (green) and filtered DIM signal (yellow) obtained with normal operation (a), and one LED shorted (b).

For a system with VIN = 12V and three LEDs in series, where VF ≈ 3V per LED (Figure 3a), the filtered DRV signal (green graph) stabilizes at approximately D × VCC = (9V/12V)5V = 3.75V. The comparator latches when the filtered DIM signal (yellow graph) goes lower than 2.5V, so the comparator begins interpreting the filtered DRV signal after approximately 100µs. Clearly, VD is higher than the threshold Ref (red line) when the comparator is active.

After one of the LEDs shorts out (Figure 3b), VD stabilizes at approximately (6V/12V)5V = 2.5V, and does not exceed the threshold anymore. That condition causes the comparator output to go high, indicating that one of the LEDs has become a short circuit.

The choice of filter constants R1C1 and R2C2 depends on several parameters. The cut-off frequency should be low enough to properly filter the DRV signal, yet small enough to allow the filtered signal to stabilize near the steady-state value achievable within the shortest dimming pulse.

This circuit can easily be adjusted to detect open-circuit LEDs. When an LED breaks and stops conducting current, the DRV duty cycle goes to 100% (when DIM is high). If you then swap the comparator-input connections and put Ref slightly below VCC, the comparator output goes high in response to an open LED.
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭