2.4 GHz无线鼠标键盘接收器的设计
扫描二维码
随时随地手机看文章
摘要:针对RF无线鼠标传输速度慢、传输距离有限的缺点,提出了一种2.4.GHz无线鼠标键盘接收器的设计方案。采用USB多媒体键盘编 码器HT82K95E和射频收发器nRF24L01进行设计,以HT82K95E为核心,完成HID设备的枚举过程。控制器利用普通I/O口模拟SPI总 线,完成了与无线收发模块的数据交换。采用nRF24L01无线通信协议中的Enhanced ShockBurst收发模式,数据低速输入,但高速发射,从而实现了鼠标键盘复合设备与主机间的无线通信功能。试验结果表明,由于采用了2.4 GHz无线技术,该无线鼠标键盘接收器能够有效传输距离可达10 m,大大降低功耗,增强了抗干扰性能。
关键词:无线通信;接收器;HT82K95E;nRF24L01
随着无线通信技术的不断发展,近距离无线通信领域出现了蓝牙、RFID、WIFI等技术。这些技术不断应用在嵌入式设备及PC外设中。 2.4 GHz无线鼠标键盘使用24~2.483 5 GHz无线频段,该频段在全球大多数国家属于免授权使用,这为无线产品的普及扫清了最大障碍。用户可迅速地进入与世界同步的无线设计领域,最大限度地缩短设计和生产时间,并且具有完美性能,能够替代蓝牙技术。
1 系统硬件结构
2.4 GHz无线鼠标键盘接收器主要实现鼠标、键盘等HID类设备在PC机上的枚举识别过程和接收无线鼠标或键盘发送的数据(包括按键值、鼠标的上下左右移动 等),并将接收到的数据通过USB接口传送给PC机,实现鼠标键盘的无线控制功能。接收器主要由USB接口部分、MCU和无线接收部分组成。系统硬件框图 如图l所示。
1. 1 USB接口部分
系统采用HOLTEK公司生产的8位USB多媒体键盘编码器HT82K95E作为系统核心。鼠标、键盘等HID类设备为低速设备,所以接 收器要能同时实现鼠标和键盘数据同PC机的双向传输。MCU首先必须具有低速的USB接口,并且最少支持3个端点(包括端点O)。综合考虑选用了 HT82K95E作为本系统的主控芯片。
本系统的USB接口部分电路图如图2所示,其中电阻R100、R101、R102、R103、R104和电容C102、C114和C115用于EMC。由于鼠标和键盘设备属于从设备,所以应在USB-信号线上加1.5 kΩ的上拉电阻。
1.2 MCU部分
MCU的复位电路采用由R108和C105组成的RC积分电路实现上电复位功能。上电瞬间,由于电容电压不能突变,所以复位引脚为低电平,然后电容开始缓 慢充电,复位引脚电位开始升高,最后变为高电平,完成芯片的上电复位。HT82K95E微控制器内部还包含一个低电压复位电路
(LVR),用于监视设备的供电电压。如果设备的供电电压下降到0.9 V~VLVR的范围内并且超过1 ms的时间,那么LVR就会自动复位设备。
应当注意的是对于该设备的复位电路,还应加1个二极管1N4148,接法如图2中的VD100。如果不加此二极管,设备在第一次使用时能够正常复位,但在以后的使用却无法正常复位,原因是电容中的电荷无法释放掉,而该二极管可以通过整个电路快速释放掉电容中的电荷。
由于nRF24L01的数据包处理模式支持与单片机低速通信而无线部分高速通信,并且nRF24L01内部有3个不同的RX FIFO寄存器和3个不同的TX FIFO寄存器,在掉电模式下、待机模式下和数据传输的过程中MCU可以随时访问FIFO寄存器。这就允许SPI接口低速传送数据,并且可以应用于MCU 硬件上没有SPI接口的情况下。因此在设计中使用HT82K95E的PA口模拟SPI总线与nRF42L01的SPI接口通信。
1.3 无线接收部分
无线接收部分电路图如图3所示。由于nRF24L01是工作于2.4 GHz的高频元件,因此,系统的PCB设计的好坏,直接影响系统的性能。在设计时,必须考虑到各种电磁干扰,注意调整电阻、电容和电感的位置,特别要注意 电容的位置。nRF24L01模块的PCB为双面板,底层不放置任何元件,在地层,顶层的空余地方(除天线衬底之外)都覆上铜,并通过过孔与底层的地相 连。
2 协议分析
2.1 nRF24L01无线通信协议
2.4 GHz无线通信协议分为3层:物理层、数据链路层和应用层。物理层包括GFSK调制和解调器、接收和发送滤波器、射频合成器、SH接口和电源管理,主要完 成数据的调制解调、编码解码、FHSS跳频扩频和SPI通信。数据链路层主要完成解包和封包过程。该协议有2种基本的封包:数据包和应答包。数据包格式如 表1所示。
前导码用来检测0和1,nRF24L01在接收模式下去除前导码,在发送模式下加入前导码。地址内容为接收机地址,地址宽度是3、4或5字节,可以对接收通道和发送通道分别进行配置,接收端从接收到的数据包中自动去除地址。
封包控制域的格式如表2所示。数据长度标志位只有在动态数据长度选项使能时才有效,6位可以表示传输的数据域字节数从0~32字节。标志位用来检测接收到 的数据包是新的还是重发的。自动应答标志位表示这个封包是否需要自动应答。封包可以采用1或2字节的CRC校验。对于应答包来说,数据域是一个可选项,但 是如果使用该选项的话应该使能动态数据长度特性。应用层按照设计需要可以是键盘和鼠标等HID类设备。
这两种封包在应用层协议中的用途不同。数据包主要用于传送发射端和接收端之间的数据信息,应答包则是在自动应答功能选项被使能之后才会出现的,以便于发送 端检测有无数据丢失。一旦数据丢失,则通过自动重发功能将丢失的数据恢复。增强型的ShockBurst模式可以同时控制应答和重发功能而无需增加MCU 工作量。
在SCK时钟控制下,数据在主从设备间传输,而且严格地遵守SPI通信的时序。作为接收端(PRX),nRF24L01通过2.4 GHz无线通信技术与发射端(PTX)进行数据交换。收发器接收到数据后,通过中断nIRQ通知MCU已接收到数据,可以进行读入操作,然后MCU通过 MISO数据传输线读入数据。nRF24L01在接收到数据之后,会自动切换到发送模式发送应答信号给发射端(PIX),这样就完成了一次数据传输过程。
2.2 USB设备枚举过程
USB的枚举过程是USB规范中一个非常重要的“动作”或“过程”。这个动作将会让PC知道何种USB设备剐接上以及其所含的各种信息。若要完成一个设备 枚举的过程,需要执行诸多的数据交换以及设备请求。图4描述了一个HID设备的枚举过程,由于本设计是针对鼠标键盘复合设备的接收器,所以在取完第一次报 告描述符后还需要再取另一个设备的报告描述符。
3 固件设计
固件设计使用HT-ICE仿真器,它提供了多种实时仿真功能,包括多功能跟踪、单步执行以及设定断点功能。图5描述了USB无线鼠标键盘 接收器的程序执行流程。在程序中,键盘使用端点1,配置为输入;鼠标使用端点2,配置为输入。都采用USB通信协议中的中断传输。采用“轮询”的工作机 制,轮询间隔为8 ms。
接收器上电后,完成系统的初始化,包括MCU的初始化和收发器的接收模式配置过程。然后系统进入接收数据包的状态中,一旦收到数据包就通过中断的形式通知 MCU有数据包到来,MCU就会通过I/O口模拟SPI总线通信过程从nRF24L01中将接收到的数据读出,然后将数据写到相
应的USB端点FIFO中。主机通过查询的方式读取各端点的数据信息,然后按照USB规范定义的鼠标和键盘的协议产生相应的动作(如鼠标的移动和按键的值)。
无线收发器的初始化过程:1)配置本机地址和要接收的数据包大小;2)配置CONFIG寄存器,使之进入接收模式,把CE置高;3)130μs 后,nRF24L01进入监视状态,等待数据包的到来;4)当接收到正确的数据包(正确的地址和CRC校验码),nRF24L01自动把字头、地址和 CRC校验位移去;5)nRF24L01通过把STATUS寄存器的RX_DR置位(STATUS一般引起微控制器中断)通知微控制器;6)微控制器把数 据从nRF24L01读出;7)所有数据读取完毕后,可以清除STATUS寄存器。nRF24L01可以进入4种主要模式之一。
4 结束语
本系统基于8位单片机Hr82K95E和nRF24L01型射频收发器设计了一个用于无线鼠标键盘复合设备的USB无线接收器。该接收器 能够实现鼠标键盘复合设备的全部功能,具有成本低、体积小、通信方向不受制约和通信距离较远等优点,使其替代蓝牙及红外遥控设备成为可能,实践表明,该接 收器具有广泛的应用前景。