低噪声放大器的两种设计方法
扫描二维码
随时随地手机看文章
低噪声放大器(LNA)是射频收发机的一个重要组成部分,它能有效提高接收机的接收灵敏度,进而提高收发机的传输距离。因此低噪声放大器的设计是否良好,关系到整个通信系统的通信质量。本文以晶体管ATF-54143为例,说明两种不同低噪声放大器的设计方法,其频率范围为2~2.2 GHz;晶体管工作电压为3 V;工作电流为40 mA;输入输出阻抗为50 Ω。
1 定性分析
1.1 晶体管的建模
通过网络可以查阅晶体管生产厂商的相关资料,可以下载厂商提供的该款晶体管模型,也可以根据实际需要下载该管的S2P文件。本例采用直接将该管的S2P文件导入到软件中,利用S参数为模型设计电路。如果是第一次导入,则可以利用模块S-Params进行S参数仿真,观察得到的S参数与S2P文件提供的数据是否相同,同时,测量晶体管的输入阻抗与对应的最小噪声系数,以及判断晶体管的稳定性等,为下一步骤做好准备。
1.2 晶体管的稳定性
对电路完成S参数仿真后,可以得到输入/输出端的mu在频率2~2.2 GHz之间均小于1,根据射频相关理论,晶体管是不稳定的。通过在输出端并联一个10 Ω和5 pF的电容,m2和m3的值均大于1,如图1,图2所示。晶体管实现了在带宽内条件稳定,并且测得在2.1 GHz时的输入阻抗为16.827-j16.041。同时发现,由于在输出端加入了电阻,使得Fmin由0.48增大到0.573,Γopt为0.329∠125.99°,Zopt=(30.007+j17.754)Ω。其中,Γopt是最佳信源反射系数。
1.3 制定方案
如图3所示,将可用增益圆族与噪声系数圆族画在同一个Γs平面上。通过分析可知,如果可用增益圆通过最佳噪声系数所在点的位置,并根据该点来进行输入端电路匹配的话,此时对于LNA而言,噪声系数是最小的,但是其增益并没有达到最佳放大。因此它是通过牺牲可用增益来换取的。在这种情况下,该晶体管增益可以达到14 dB左右,Fmin大约为0.48,如图3所示。
另一种方案是在可用增益和噪声系数之间取得平衡,以尽可能用小噪声匹配为目标,采用在兼顾增益前提下的设计方案。在这种情况下该晶体管增益大约为15 dB左右,Fmin大约为0.7(见图3)。这个就是本文中提到的第2种方案。
2 以最佳噪声系数为设计目标方案的仿真
2.1 输入匹配电路设计
对于低噪声放大器,为了获得最小的噪声系数,Γs有个最佳Γopt系数值,此时LNA达到最小噪声系数,即达到最佳噪声匹配状态。当匹配状态偏离最佳位置时,LNA的噪声系数将增大。前面定性分析中已经获得Γopt=0.329∠125.99°,以及对应的Zopt=30.007+j17.754 Ω。下面可以利用ADS的Passive Circuit/Micorstrip ControlWindow这个工具,自动生成输入端口的匹配电路。
在原理图中添加一个DA_SSMatehl的智能模块,然后修改其中的设置:F=2.1 GHz,Zin=50 Ω。值得注意的是,利用该工具生成匹配电路时,Zload是Zopt的共轭。设置完毕后,再添加一个MSub的控件,该控件主要用于描述基板的基本信息,修改其中的设置为H=0.8 mm,Er=4.3,Mur=1,Cond=5.88×107,Hu=1.0e+33 mm,T=0.03 mil。设置完后,即可进行自动匹配电路的生成,结果电路如图4所示。
将输入匹配电路添加到图1后再进行S参数的仿真。可以看到,最佳噪声系数Γopt的位置由于输入匹配电路的加入而成功匹配到50 Ω的位置。
2.2 输出端匹配电路设计
根据最大功率增益原则进行输出端匹配电路的设计(考虑到输出稳定电路的存在,对输出阻抗的影响,在进行输出阻抗测量时要把稳定电路计算在内),即将输出阻抗(Zopt=8.055-j8.980,如图5所示)使用上述的方法匹配到50 Ω。得到的输出端匹配电路如图6所示。
2.3 仿真结果
观察最后的仿真结果可以看到,增益为14.4 dB;噪声系数为0.586,这与稳定后的晶体管最佳噪声系数0.573非常接近,且增益平坦度低,稳定性能优异。具体性能指标如图7所示。
3 以噪声系数为主兼顾增益为设计目标方案的仿真
3.1 输入匹配电路设计
如果选择基板材料为环氧玻璃FR-4基板,介电常数为4.3,厚度为0.8 mm,则2.1 GHz时的晶体管输入阻抗为1 6.827-j16.041。采用上述匹配电路生成方法,输入匹配电路采用ADS设计向导中的单支节模块来设计。可以很快得到图8中的匹配电路。如图9所示,图中m6=50(0.927+j0.001)。与50 Ω的非常接近,所以得出的输入端匹配情况比较合理。
3.2 输出匹配电路设计
在完成输入匹配电路设计之后,可以对输出匹配电路进行设计。在此充分发挥CAD软件的优势,借助优化的方法来实现。基本过程如下:
将输入匹配电路的结果添加到图10中,并在晶体管输出端添加如图所示的微带。调出优化控件,并将优化的目标设置为dB(S(11))为-20,dB(S(22))为-15。
在优化开始时,先将TL1,TL2,TL3宽度设置为61.394 mil,这是为了保障在考虑到板材、板材厚度等因素下微带线的特性阻抗为50 Ω。预设TL1,TL2,TL3的长度,优化一次后,刷新结果,观察各种图表的指标是否更好,数值是否达到设置的最大值,如果达到最大值,再次改变设置值重新优化。反复多次后,将会达到再次改变这几个数值,若改变后对于各种指标作用不大,可以尝试改变电阻和输入匹配的数值再进行优化。
通过多次调试发现,R1设为15 Ω,以及加上TL7后,增益和噪声系数以及输入输出驻波比效果更好。仿真电路原理图及优化控件和目标控件如图10所示。
3.3 仿真结果
观察最后的仿真结果可以看到,增益为15.816 dB;噪声系数为0.708,该指标均比定性分析时的都要好,其他性能指标如图11所示。
4 结语
通过对晶体管进行定性分析,可以根据实际需要选择低噪声前置放大器的设计方案,第一种方案的最佳噪声系数是以牺牲增益而得到的;第二种方案是以提高噪声系数为代价,降低驻波比VSWR的值得到的。2种方法利用计算机辅助设计工具均可以快速实现,各有各自的存在价值,这在很多场合都得到了应用。