当前位置:首页 > 模拟 > 模拟
[导读]摘要:在智能微波开关信号解调电路中采用了三级程控放大电路,各级放大电路的增益由多路SPI数字电位器MCP4351控制。测量电路对灵敏度调节电位器输出电压进行测量,在保证各级输出不失真的情况下,根据约束条件分配测

摘要:在智能微波开关信号解调电路中采用了三级程控放大电路,各级放大电路的增益由多路SPI数字电位器MCP4351控制。测量电路对灵敏度调节电位器输出电压进行测量,在保证各级输出不失真的情况下,根据约束条件分配测量结果所对应的总增益,并形成增益分配表。其中,第二、三级增益按照线性法分配,第一级增益按照约束方程计算得出。解调时,系统控制核心MSP430F149查增益分配表得到数字电位器的调整值,并按照调整值调节电位器的阻值,实现增益的自动控制。该方法不需要单片机进行大量复杂的增益计算过程,节省运行时间和程序存储空间。
关键词:解调;自动增益控制;数字电位器;程控放大电路

0 引言
    智能微波开关是一种基于微波波束障碍法实现对物体位置实时监测的智能仪表。智能微波开关的现场部分分为发射和接收两部分,两部分分别被安装于垂直于物流方向的料仓或传输带的两端。发射部分发射出经调制的高频微波脉冲信号;接收部分接收此信号,并经过解调、放大和滤波等一系列处理,最终将处理好的信号送入微处理器(MSP430F149)进行判断,从而确定被测物体的料位(或有无)。
    在实际工业应用中,智能微波开关应用环境复杂,发射部分和接收部分之间相对距离的不确定性、干扰等因素造成微波检波信号幅值动态范围很大。若放大电路的增益过大,将会引起信号的“削顶”失真;若放大电路的增益过小,将会使信号幅值偏低而引起误判。这两种情况都将使后续测量和处理电路无法正确识别信号。另外,由于微波检波器接收到的微波信号幅值与微波开关发射器和接收器之间的距离成指数衰减关系,因此为满足不同距离的使用要求,设计时采取多级放大的方法弥补微波信号幅值的指数衰减,以保证距离变化在一定范围内时放大后的信号幅值基本保持不变,以便于检测。
    为了保证信号检测的准确性,在放大电路中必须合理分配各级增益,使每级均不失真,且放大信号达到最佳测量范围,提高接收部分的灵敏度,以确保整个智能微波开关系统的检测正确无误。有关增益自动控制的方法很多,由于应用环境以及实现方法的不同而各具特色。文献中提出了一种两级级联控制总增益的方法,采用两片AD8367芯片组成放大电路,并通过合理计算和分配两级增益,保证了输出电压不失真,提高了系统的线性性能。然而两级放大电路的增益有限,为了满足更宽增益范围的要求,需要增加更多级联,以保证有足够可调节的增益。
    本文采用微处理器MSP430F149控制带8位易失性存储器的四路SPI数字电位器MCP4351组成三级级联放大电路,实现了对微波检波信号放大增益的自动控制。此方法工作效率高,适合宽动态范围的增益控制。下边分别从硬件电路设计、软件设计思路及总体实现方法等方面进行分析。

1 增益自动控制系统框架设计
    智能微波开关接收部分对接收到的微波检波器输出信号进行前置固定增益(增益约为1)放大以及滤波以后,通过三级程控放大电路放大,将信号幅值放大到要求的范围,再由后续电路进行解调和处理。放大器级联模型如图1所示。


    为了适应宽动态范围的应用,放大器的增益控制必须足够的灵活。当输入幅值特别小的时候,放大电路要能够将小幅值信号放大到要求的范围内;当输入幅值特别大的时候,放大电路还应该能够将大幅值信号压缩。因此,第一级放大电路的设计最关键,要求对信号既可以放大也可以压缩。而第二级和第三级放大电路仅具有放大能力就可以满足实际应用要求。
2 增益自动控制电路硬件设计
    根据宽动态范围检波器输出信号的特点(输出信号约为500μV~2.75 V),本文设计的第一级程控增益放大电路要适应如此宽动态范围信号的放大,同时又能够滤除噪声,故采用集成运放、程控数字电位器和电容组成了反相输入的一阶低通滤波电路,同时还具有增益调节功能,微处理器可以通过程序控制此电路的增益。所设计的第一级程控增益放大部分的电路原理图如图2所示(其中中R11和R12为程控数字电位器R1)。


    对图1进行分析,可以得到第一级程控放大电路的输出电压为:
   
    在实际电路中,选用的集成放大器为LM6154,它是四路高速低功耗集成运放。选用的数字电位器为MCP4351,它是带易失性存储器的8位四路数字电位器。其电阻调节的步长为:

    式中:N1为0~256之间的十进制整数;Rw为电位器抽头阻值(75 Ω)。
    经过计算可知:
   
    通过以上分析可以看出,第一级程控增益放大部分不仅可以将信号幅值放大也可以将信号幅值压缩,使得微波信号幅值始终保持在适当的范围内。因此需要对程控增益进行设计和控制。
    另外,由于R10非常小,且接近于Rw,所以当刚上电时,N1取128(相当于抽头在中点),近似有g1=1。
    第二级程控增益放大部分的电路原理图如图3所示(其中R21和R22为程控数字电位器R2)。


    由图2可以得到第二级程控放大电路的输出电压为:
   
   
    由于第三级放大电路与第二级放大电路的电路形式相同,故第三级程控放大电路增益为:
   
    根据所选数字电位器MCP4351的参数,结合电路的形式,在保证信号不失真的情况下,可以得出程控放大电路各级输出电压范围为:
   
    在如此宽的动态范围内,如何分配各级增益才能使整个放大电路的输出信号幅值达到最佳值?在实验中,先后采用了两种方法分配各级增益。
    第一种方法是三级增益同步调节(同大同小),由于各级输出电压的限制,导致增益可调范围变窄。如果同时调的过大,则总增益过大,从而将造成信号幅值太大引起失真;如果调的太小,总增益就变得很小,造成信号难以被检测出来。
    第二种方法是将第一级增益与后两级增益分开调节。由于第一级增益的变化范围大,既可以将微波检波信号放大又可以将其压缩,所以第一级放大电路在整个三级放大电路中起到关键作用。第二级和第三级电路形式完全相同,这两级放大电路只能将信号幅值放大。因此,在总增益不变的情况下,先调节第二级和第三级增益,当这两级增益确定后,再根据需要调节第一级增益。
    第二级和第三级放大电路的增益公式相同,为了提高调节效率,将第二级和第三级增益进行同步调节,即g3=g2。故总增益为:
   
    因此,只要先确定出g2,就可以很方便地得到g1的值。这种方法有效地解决了第一种方法中存在增益调节范围小的缺点。
    各级增益计算步骤为:
    (1)将总增益G线性等分成4 096级(灵敏度A/D采样位数为12位);
    (2)再根据式(13)和式(14)所确定的各级增益范围,对应每级的G确定出每级g2的值,并根据式(9)确定出第二、三级放大电路数字电位器刀口位置调整值N2和N3;
    (3)g2确定后,根据式(16)即可得出每级g1的值,进而根据式(4)计算出第一级放大电路数字电位器刀口位置调整值N1。

3 增益自动控制软件设计
    制作软件时,将计算好的各级放大器对应的比例值N21,N2和N3做成表存入处理器MSP430F149中,以备调节时由处理程序查找。系统工作时,通过调节灵敏度旋钮控制总增益G,当灵敏度旋钮被调到一个值后,MSP430F149读取灵敏度值得出对应的总增益值,通过查表方式得到各级数字电位器放大比例值N1,N2和N3,并将其输出给MCP4351的各存储器,MCP4351再按照存储器中N1,N2和N3的值调节数字电位器,改变反馈电阻阻值,从而实现增益调控。

4 结论
    本文设计的三级级联放大电路应用于智能微波开关接收部分的增益控制电路,实现了对微波解调信号增益的动态控制。在多级增益分配过程中,局部增益线性分配,其余按照约束方程计算,并形成增益分配表,供CPU查表控制增益。在增益自动控制的放大电路中,硬件电路实现简便;适用于1~37 234宽动态范围增益的调节;又由于增益的调节是CPU通过查表方式完成的,节省了系统计算时间,降低了编程难度,整个系统工作效率高。实际应用中能够满足工业要求,并取得了理想的效果。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭