触摸屏低功耗设计
扫描二维码
随时随地手机看文章
触摸屏低功耗设计
应用于智能手机的低功耗触摸屏接口设计
在智能电话中,液晶触摸屏接口最受欢迎,用户通过它来使用各种应用程序,或者用手指滚动访问网页,这样在节约时间、预算和功耗的情况下,开发这类复杂的接口,Altera MAX IIZ CPLD会是一个不错的选择。
定制或者自行触摸屏低功耗设计
任何触摸屏方案都包括两部分:2D触摸传感器和计算应用程序,后者将传感器数据转换为用户意图。
AD7142 CDC用于监测电容变化,只有14个电容传感器通道。参考设计是完整的传感器和数据采集系统,可以进行定制,也可以原样使用。参考设计有一个简单的数据解释程序,演示并测试多触点传感器的工作。应用处理器通过SPI或者I2C总线访问AD7142的CDC寄存器文件,将MAX IIZ CPLD的SRC信号控制设置在合适的轴上。
它提供铟锡氧化物(ITO)屏以及简单的双面PCB用作多触点导航板。在这一参考设计中,MAX IIZ CPLD扩展了AD7142 CDC的功能,使其能够处理两维ITO薄膜和PCB触摸传感器。长时间暂停后,触摸屏监测到一次触摸时,MAX IIZ CPLD会产生一个中断信号。
图1(a)所示的2D多触点参考设计基于MAX IIZ EPM240Z CPLD以及ADI的AD7142 集成电容数字转换器(CDC),支持片内环境校准以及ITO屏。
图1:(a) 基于Altera MAX IIZ EPM240Z CPLD的多触点触摸屏参考设计
理想情况下,x走线在下面,y走线在上面,连接至AD7142输入。ITO 触摸传感器有两个被绝缘体分开的互相垂直的层,上面分别是x和y走线。如此布置的原因是CDC在监视靠近手指的走线时更敏感。走线阵列较宽,间距为5至10mm。
图1(b)中左侧为触摸屏交叉部分,右侧是触摸屏。在实际的显示触摸屏中,走线是透明的。
图1:(b) ITO触摸屏或者PCB触摸板的侧视图(左)以及正视图(右)
图1(b)中的传感器可实现计算导航板,从而避免了使用普通导航板所需要的选择按钮。如图2所示,中指移动光标,食指和无名指触摸屏幕,指示鼠标左键或者右键点击。去掉移动部分后,电容触摸屏传感器比按键和按键开关更耐用。
图2:用手指控制无开关导航板
ADI的AD7142 CDC
AD7142 CDC非常灵敏,应用处理器利用这一详细的电容矢量值,确定手指位于9.3传感器位置,即在传感器9和10之间。AD7142 CDC连续进行14次可寻址电容测量。AD7142 CDC精度达到12位,因此,只需要14个传感器就可以精确测量手指的位置。AD7142 CDC并不是设计用作触摸屏解码器,而是用于测量电容以及PCB上传感器线阵的电容变化。每个测量周期结束后,通过I2C或者SPI总线来访问这些数值。
AD7142 CDC电气特性比较完备,能校准特定的PCB布局,然后针对14个传感器输入的每一输入进行电容测量,精度为12位。AD7142 CDC在SRC信号上发送一个250kHz方波,驱动靠近传感器板的走线,然后测量接收到的SRC信号强度。由于触摸屏电容和SRC信号接收强度成正比,因此AD7142 CDC探测并量化用户手指接触触摸屏时的电容变化。
图3显示当没有手指接触时基线条件下的寄存器值,下面的图显示了手指触摸传感器9时的寄存器值。
图3:线性AD7142 CDC采样示意图
MAX IIZ中大量的I/O (5x5mm封装支持54个I/O,7x7mm封装支持116个I/O)结合AD7142的高分辨率电容数字测量能力,使这一解决方案能够适用于面积较大的触摸屏和面板。AD7142 CDC可以测量14个传感器相对于一条SRC走线的电容。增加MAX IIZ CPLD后,可在串行接口的控制下,获得AD7142 CDC的SRC方波信号,并选择驱动触摸屏的某一条垂直x走线,从而支持多条SRC走线。
图4:电容数字采样2D阵列表示:基线(左)和触摸后的结果(右)
AD7142 CDC可以进行相对于垂直走线轴或者本地的电容测量。左侧是基线电容测量,而右侧是两个手指触摸传感器后的结果。图中蓝色和红色采样行表示哪一SRC走线被激活。图4为AD7142 CDC和MAX IIZ CPLD相结合后的2D电容测量结果,显示了16条走线,即,对x轴进行了16次划分。最低功耗级可以将应用处理器和AD7142 CDC置于关断模式。采用外部32kHz时钟以及每秒一次的采样率,典型的MAX IIZ CPLD待机电流只有50μA。
在更低的功耗级中,需要用户触摸屏幕中心来唤醒器件,这要求应用处理器只采样一条水平走线和一条垂直走线。MAX IIZ CPLD和AD7142 CDC触摸屏解码参考设计的功效非常高,正常全速工作和正常分辨率下一般只需要1.5mA电流。它还支持三种其它功效级别。
在第一低功耗级中,应用处理器降低采样率,只采集一部分水平和垂直走线,或者使用精确的AD7142 CDC来确定走线之间的触摸点。当MAX IIZ CPLD的高功效电容探测系统监测到屏幕被触摸时,它通过中断信号唤醒处理器。处理器被唤醒后,系统以更高的精度来读取触摸位置。
使用I2C总线,采集所有数据的时间大约为375 ms,而使用SPI总线的时间为300ms。(降低CDC采样分辨率可以减少采样周期)。应用处理器通过串行接口设置MAX IIZ CPLD驱动传感器S1列和SRC信号,读取来自AD7142 CDC的14个电容值。
然后,应用处理器通知MAX IIZ CPLD将SRC移至下一垂直走线,进行另一次14个电容测量,不断重复,直至应用处理器获得了触摸传感器2D区域内所有244个(14x16)电容测量值。然后,应用处理器处理原始数据,确定用户意图。
触摸屏低功耗设计小结
为使产品得到消费者的更多青睐,单点触摸屏方案需要采用两点或者多点触摸屏。并且单点触摸屏和面板已经广泛的被认为是手机必备功能。现在应用的多触点解决方案还不多,利用现有元件,Altera MAX IIZ CPLD 实现了灵活的多触点用户接口,相信该技术在不久的将来定会有大作为。
AK4186:低功耗触摸屏控制设计方案
AKM公司的AK4186是一个4线/5线电阻触摸屏控制器,内部集成了一个12位的SAR A/D转换器。AK4186可以利用两个A/D转换探测屏幕上被按压的位置,还可以测量触摸压力。AK4186具有自动持续测量和测量数据计算功能。这两项功能通常需要外加配件,例如计算平均屏幕输入值,可以通过AK4186进行处理。此外,新的时序模式实现了短的协调测量时间,同时极大降低了微处理器的开支。AK4186的电源电压低至1.6V,从而可以连接一个低电压微处理器。AK4186非常适用于便携式电话、DSC、DVC、智能手机以及其它便携式设备。
AK4186主要特性
• 4线或5线触摸屏界面
• I2C串行接口
• 带有S/H电路的12位SAR A/D转换器
• 采样速率:22.2kHz
• 笔压力测量(4线)
• 连续读取功能
• 集成内部Osc(时序模式)
• 集成平均中值滤波
• 低电压运行:VDD=1.6V~3.6V
• PENIRQN缓冲输出
• 低功耗:1.8V时为60μA
• 自动关机
• 封装:12引脚CSP(1.7mm×1.3mm,0.4mm引脚间距)
AK4186评估板Rev.1 AKD4186-A
AKD4186-A是一块评估触摸屏控制器AK4186的电路板。它采用了CSP小型封装,适用于手机及手持式游戏设备。由于AKD4186-A拥有一块触摸屏I/F和数字I/O电源输入终端,很容易与低功率/电压驱动的目标系统相连接。此外,由于配备了模拟输入终端,因此模拟电压也可以被测出。
更多资讯请关注:21ic模拟频道