当前位置:首页 > 模拟 > 模拟
[导读]在把射频芯片或模块集成到典型的嵌入式系统中时,设计人员必须面临的一项常见任务是追踪和消除噪声和杂散信号。潜在的噪声来源包括:开关电源、来自系统其它部分的数字噪声、以及外部噪声来源。在考虑噪声时,还应考

在把射频芯片或模块集成到典型的嵌入式系统中时,设计人员必须面临的一项常见任务是追踪和消除噪声和杂散信号。潜在的噪声来源包括:开关电源、来自系统其它部分的数字噪声、以及外部噪声来源。在考虑噪声时,还应考虑射频电路产生的任何可能的干扰,这是避免干扰其它无线电设备及满足法规要求的一项重要考虑因素。在本应用指南中,我们将介绍使用 MDO4000 系列混合域示波器系列查找噪声来源的技术和技巧。

 

 

图 1泰克 MDO4000 系列混合域示波器和 Microchip 射频测试电路板模块。

把射频通信功能集成到嵌入式系统中

在嵌入式系统中增加射频功能时,在集成中一般会遇到许多问题。

对电池供电系统,一般使用开关稳压器,以最低的成本实现最高的实用效率。电源尺寸也经常是一个问题。这要求使用高开关频率,使输出滤波的规格和要求达到最小。这些电源在输出电压上通常有纹波,这些波纹可能会出现在RF发射机输出上,特别是在搞工作负荷下或在电池电量不足时。为避免这种情况,可能需要额外的电源滤波,以避免射频输出信号受到影响,尽管这会导致增加成本或尺寸。

无线电芯片或模块的硬件电路和软件配置可能会影响发送的信号质量。如果设置和过滤不当,射频输出信号可能会给其它无线电系统带来干扰,或不能满足相应的法规标准。某些无线电系统需要信道滤波器、RF表面声波和其它成本相对较高的滤波器,以满足信道外和带外辐射的法规要求。

 

 

图2. 被测器件(Microchip Technologies MRF89XA 868 MHz无线电)与MDO4000系列混合域示波器之间的测试连接。

应用实例:带有开关电源、支持无线功能的嵌入式系统

在下面的讨论中,被测器件将使用一块灵活的射频通信集成电路,其已经集成到射频测试模块中,即MicrochipTechnologies MRF89XM8A。这个模块采用 MRF89XA集成电路及滤波和天线匹配。为进行演示,这个模块安装在Microchip Explorer 16电路板上,与电脑一起使用,对射频参数设置进行编程。

为演示使用开关电源对无线电供电的影响,我们使用升压转换器集成电路Microchip MCP1640,其集成到MCP1640EV评测电路板上。这个转换器以大约500 kHz频率开关,这一频率对开关稳压器十分常见。它可以提供无线电模块所需的 3.3 V 输出电压,支持最低 0.8 V 的输入电压。这意味着可以从一个电池单元为无线电供电,降低产品的电池尺寸。

为调试这个器件,我们使用泰克MDO4000系列混合域示波器。MDO4000 系列拥有独特的功能,可以同时显示 4个模拟信号、16 个数字波形、最多 4 条解码的串行总线和 / 或并行总线及 1 个 RF 信号。所有这些信号都时间相关,显示控制信号对模拟域和 RF 域的影响。图 2 说明了下述测试使用的设置。

 

 

图 3. 查看时域和频域。

识别噪声来源

我们测量以868 MHz为中心的射频频谱,其拥有相当低的 2 kbps的 FSK调制数据速率,以供参考。图 3 显示了参考频谱。注意 MDO4000 系列同时显示时域视图和频域视图,所有信号都时间相关。

画面的下半部分显示了RF信号的频域视图,在本例中是射频发射机输出,画面的上半部分是时域的传统示波器视图。频域视图中显示的频谱来自时域视图中短橙色条指明的时间周期,称为频谱时间(Spectrum Time)。

由于时域画面的水平量程独立于处理时域画面傅立叶变换(FFT)要求的时间数量,表示与RF采集相关的实际时间周期非常重要。MDO4000系列示波器的独特结构可以以时间相关的方式分开采集所有输入(数字信号、模拟信号和RF信号)。每个输入有单独的存储器,视时域画面的水平采集时间,存储器中采集的 RF 信号支持频谱时间,并可以在模拟时间内部移动,如图 4 所示。

 

 

图 4. 使用干净的实验源,在数据前码多个符期间的占用功率测结果。

通过 MDO4000 系列,可以在采集数据中移动频谱时间(Spectrum Time),考察 RF 频谱怎样随时间变化。在图4中,我们调整频谱时间的位置,显示数据包前置码多个符号期间发送的信号的频谱。

频谱时间是支持频谱画面希望的分辨率带宽(RBW)要求的时间数量。它等于窗口因数除以 RBW。默认的 KaiserWindow的整形因数为2.23,在本例中,频谱时间为2.23/220 Hz,约为 10 ms。

FSK调制一次只有一个RF信号频率,我们对频谱使用较长的采集时间,以测量占用带宽和总功率。

 

 

图 5. 数据包数据期间的频谱。频率随时间变化曲线显示了采集的频谱时间主要以较低频率 Tx ON 时间为主。

为简便地看到无线电中的数据包传输,我们在MDO4000系列的时域视图中增加了RF随时间变化曲线。标有“A”的橙色曲线显示了瞬时 RF 的幅度随时间的变化。标有“f”的橙色曲线显示了相对于中心频率的瞬时RF信号的频率随时间变化。

绿色波形(通道4)显示了输入到射频模块的电流。可以看到,电流从数据包之间接近0上升到传输期间大约40 mA。黄色波形(通道 1)显示了模块电源电压上的 AC 纹波。注意在传输期间只有很小的电压暂降。

图 5 显示了在数据包数据部分获得的同一信号。注意大多数能量位于较低的频率上。图 4 和图 5 都是在使用干净的实验室电源供电的模块中获得的。

 

 

图 6. 开关电源的频谱和电源测量结果。

图6显示了相同的RF信号,但使用升压型开关电源为射频模块供电。升压稳压器因产生噪声而臭名昭著,但它允许使用一个或两个碱性或镍镉电池及相对较少的器件,降低了成本。注意被调制信号底部的噪声提高。在发送的信号附近,噪声至少要比干净的电源高 5 dB。噪声已经清晰地显现在电流波形和电压波形中。额外的噪声还会令从发射机到接收机上的信号信噪比变差,降低射频系统的有效工作范围。

 

 

图 7. 到等效载荷的电源开关噪声

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭