采用全桥解决方案实现冷阴极荧光灯驱动
扫描二维码
随时随地手机看文章
今天,冷阴极荧光灯CCFL被用于各种应用,如笔记本电脑、显示器、电视等各种应用,它们的功能是给显示器提供背光,以及调节显示器的亮度。
CCFL 应用电路可以驱动匹配的荧光灯,在基于全桥转换器或ROYER拓扑的交流直流逆向转换器内能够见到这种应用。
灯管的数量可以是1、2、4或6支,输出功率范围是2W到24W。交直流逆向转换器能够把输入的直流低电压转换成交流高压输出,以驱动荧光灯。CCFL的电源电压通常是12V直流电压,但是在全桥解决方案中,电压范围可以是8V~24V。
以电压源配置的全桥解决方案基本上是由四个位于桥内的功率MOSFET晶体管组成,上桥臂晶体管是P沟道型晶体管,而位于下桥臂的MOSFET是N沟道型晶体管。一般情况下,同一个封装集成一对互补性功率MOSFET晶体管(位于同一列的N型和P型晶体管)。图1所示是一个含有这些元件的典型的应用电路示意图。
从图1中不难看出,CCFL应用电路包括功率MOSFET晶体管桥(由U1和U2元件组成)、T1变压器(提高从一次侧到二次侧的输入交流电压)、输出电路(由一个6W灯管和一个串联电容C4组成)和反馈电路(由R4电阻和C1
全桥拓扑:相移控制器介绍
图 3 首先帮助我们了解了一个典型的全桥拓扑的工作原理,然后是相移控制器模式的工作过程。
在图3中,为了简便我们的研究,全桥内的功率MOSFET管都分别被视为开关S1、S2、S3和S4,开关S2和S3都位于上桥臂,S1和S4都位于下桥臂。位于同一列的开关(S1和S3,S2和S4) 不能同时接通,以防止短路情况发生;在相移控制操作模式下,位于同一列的开关可以同时开或关。针对荧光灯和变压器的等效电路,图3还描述了CCFL应用中的全桥逆变器的典型负载。在图3所示的情况中,S2和S1是通态,而S3和S4是断态,因此,电流经过相同的开关和负载;然后,S2和S1关断, S3和 S4 导通,电流改变方向,见图4
在一个全桥逆变器的典型工作模式下,电路中的电流只与输出负载有关,不能进行亮度控制操作。而且,传入灯管的功率达到最大值。
为了在一个采用全桥拓扑的CFFL应用中进行灯的亮度控制,必须采用相移控制系统(见图5)。
在一个全桥逆变器的典型工作模式下,只能进行第1阶段和第3阶段;然而在相移控制模式下,还能进行第2阶段和第4阶段。在第2阶段和第4阶段时,负载的端子短路,没有功率从网络流入灯管;在第4阶段时,电流连续流经负载和S1、S4开关,或者在第2阶段时,电流连续流经负载和S2、S3开关。第1阶段和第3阶段的时长相同,第2阶段和第4阶段的时长相同。这四个阶段的时长总合等于输入信号的时长,当第2阶段和第4阶段的时长增加时,第1阶段和第3阶段的时长也会增加,结果,灯管的功率和亮度也会增强。如果第1阶段和第3阶段的时长等于零,没有功率从网络流入灯管,灯管关断。针对相移控制系统,我们在图6中给出了相应的等效电路,其中,输入信号是一个特殊的方波信号。
“ton-t step1” 是第1阶段的时长, “ton-t step3” 是第3阶段的时长, “toff-t step 2” 是第2阶段的时长, “toff-t step 4” 是第4阶段的时长; T 是信号的时长。在第1阶段和第3阶段时,网络给负载供电,这两个阶段的时间叫做ton。在第2和第4阶段,网络没有给负载供电,这两个阶段的时间叫做 toff.; d 是工作比,它用ton占T的百分比表示。提高第1阶段和第3阶段的时长,d的百分比也随着提高,反之亦然。
只有参考图7和图8,才能理解这个系统为什么叫做相移控制。
图7标出了一个全桥逆变器的典型工作模式,在这种情况下,只进行第1和第3阶段操作。当S1关断时,S2也关断,而S3和S4导通,因为它们的漏源极的电压为零;S1和S2的漏源极的电压为12V网络电压。针对通态S1和S2的时长,可以做出相同的考虑。
为了实现相移控制系统,S1和S3的相位都是固定的,S2和S4的相位发生变化,如图8所示,在两个串联开关之间,相位转换是固定的,具体变化跟灯亮度有关。
在间隔1时,进行第4阶段,因为S1和S4关断,S2和S3导通;在间隔2时,进行第3阶段,因为S1和S2关断,S3和S4导通;在间隔3时,进行第2阶段,因为S1和S4导通,S2和S3关断;最后,在间隔4时,进行第1阶段,因为S1和S2导 通,S3和S4关断;
使用STS3C3F30L器件的CFFL应用实例
本章将讨论一个使用全桥拓扑和STS3C3F30L器件的CFFL应用实例,实际应用的电路示意图与图4完全相同,灯是一个6W荧光灯,如图10所示。
下图所示是STS3C3F30L器件内部的P沟道和N沟道晶体管的波形图。