当前位置:首页 > 模拟 > 模拟
[导读]摘要:阐述了单相桥式全控整流电路的工作原理,并且详细研究了在MATLAB/Simulink中的单相桥式全控整流电路的建模方法;最后给出了详细的仿真结果,仿真结果和理论分析一致,为单相桥式全控整流电路的研究打下了坚实的

摘要:阐述了单相桥式全控整流电路的工作原理,并且详细研究了在MATLAB/Simulink中的单相桥式全控整流电路的建模方法;最后给出了详细的仿真结果,仿真结果和理论分析一致,为单相桥式全控整流电路的研究打下了坚实的基础。

0 引言

整流电路是将交流电能转变成直流电能的一种电路,它通常由变压器、整流主电路、滤波器等组成,广泛用于直流电动机调速、发动机的励磁调节、电镀、电解等领域,而单相桥式全控整流电路就是单相整流电路中应用较多的一种电路。本文所介绍的就是单相桥式全控整流电路的工作原理和它在MATLAB/Simulink环境下的建模与仿真

1 单相桥式全控整流电路的工作原理

单相桥式全控整流电路图(带电阻性负载)如图1所示,电路由交流电源u1、整流变压器T、晶闸管VT1~4、负载R以及触发电路组成。其中晶闸管VT1和VT4、晶闸管VT2和VT3各组成一对桥臂,又由于晶闸管具有单向可控导电性能,所以在变压器的二次电压u2的正半周,晶闸管VT1和VT3被触发,负半周时晶闸管VT2和VT3被触发。在u2的正半周时(a点电位高于b点电位),如果4个晶闸管都不导通,负载电流id为0,负载电压也为0,VT1、VT4串联承受电压u2,设VT1和VT4的漏电阻相等,则各承受u2的一半。若在触发角α处给VT1和VT4。加触发脉冲,VT1和VT4导通,电流从电源a端经VT1、R、VT4流回电源b端。当u2过0的时候,流过晶闸管的电流也降到0,VT1和VT4关断。

在u2的正半周时,仍在触发延迟角的α处触发延迟VT2和VT3(VT2和VT3的α=0处为wt=π),VT2和VT3导通,电流从电源b端流出,经VT3、R、VT2流回电源a端。到u2过0时,电流又降为0,VT2和VT3关断。此后又是VT1和VT4导通,如此循环工作下去。

2 单相桥式全控整流电路在MATLAB/Simulink的建模与仿真

2.1 单相桥式电路的仿真模型

单相桥式全控整流电路主要由交流电源、晶闸管、RLC负载等构成,其在MATLAB/Simulink仿真模型如图2所示。由于在SIMULINK库中没有专用的单相桥式整流电路的触发模块,这里用三相桥的触发器(Synchronized 6-pulse Generator)来产生晶闸管VT1、VT4和VT2、VT3的触发脉冲,如图4所示,用电压测量取得变压器二次电压信号作为触发器的同步信号,信号从触发器AB端输入,触发器的BC、CA端和Block端用常数模块置“0”,Synchronized 6-pulse Generator产生6路触发信号,通过Demux分解并与变压器的二次电压的相位比较,图4上为变压

器二次电压波形,中间为第6路触发脉冲,下为第4路触发脉冲,此脉冲信号与正弦信号比较的时候,这二路信号可以满足单相桥的触发和移相控制要求,因此将第6路触发脉冲连接VT1和VT4控制板,第4路触发脉冲连接VT2和VT3控制板。

2.2 仿真参数设置

(1)电压源参数。电压源为AC,电压为220V,频率50Hz,输入电压峰值为220*sqrt(2)。

(2)变压器参数。电压为220V(有效值),二次电压为100V(有效值)。

(3)晶闸管使用默认参数。

(4)负载RLC的参数。根据具体情况设置

(5)脉冲发生器Synchronized 6-pulse Generator的参数:同步频率为50Hz,脉冲宽度取10°。

(6)电阻负载角度α参数:α=0°、30°、60°、120°。

(7)系统仿真参数:开始时间选0,可变步长,仿真数值选ode23,误差选择0.001。

2.3 仿真结果及其分析

图3~5为电阻性负载时的电压和电流输出波形,图6~8为阻感负载时的电压和电流的输出波形。图3和图4波形表明电压和电流都是脉动的,电源的交流电经过整流器后成为了直流电,实现了整流的功能,波形呈现周期性正弦半波,整流后的电压和电流形状相似。图3、图4和图5的电压电流波形已随控制角变化,随着控制角的增加,输出电压的平均值减小,输出电流也随之下降。图6~图相比较图3~5,整流输出电流脉动明显小,说明输出电感具有滤波的作用。

3 结束语

本文在MATLAB软件中对单相桥式全控整流电路进行了建模与仿真,分别在负载为0°、30°和60°时对电路进行了仿真,得出的结果与理论相一致,为技术人员学习和生活中的各种应用提供了很好的思路。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭