大佬讲解滤波器原理(十二),带通滤波器原理+数字滤波器原理
扫描二维码
随时随地手机看文章
对于滤波器原理,小编曾带来诸多相关内容,如腔体滤波器原理、lc滤波器原理以及实时滤波器原理等。本文中,小编将为大家讲解带通滤波器原理、数字滤波器原理以及两类滤波器相关内容,一起来了解下吧。
一、带通滤波器
带通滤波器(band-pass filter)是一个允许特定频段的波通过同时屏蔽其他频段的设备。比如RLC振荡回路就是一个模拟带通滤波器。
带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。一个模拟带通滤波器的例子是电阻-电感-电容电路(RLC circuit)。这些滤波器也可以用低通滤波器同高通滤波器组合来产生。
1.工作原理
一个理想的带通滤波器应该有一个完全平坦的通带,在通带内没有放大或者衰减,并且在通带之外所有频率都被完全衰减掉,另外,通带外的转换在极小的频率范围完成。
实际上,并不存在理想的带通滤波器。滤波器并不能够将期望频率范围外的所有频率完全衰减掉,尤其是在所要的通带外还有一个被衰减但是没有被隔离的范围。这通常称为滤波器的滚降现象,并且使用每十倍频的衰减幅度的dB数来表示。通常,滤波器的设计尽量保证滚降范围越窄越好,这样滤波器的性能就与设计更加接近。然而,随着滚降范围越来越小,通带就变得不再平坦,开始出现“波纹”。这种现象在通带的边缘处尤其明显,这种效应称为吉布斯现象。
除了电子学和信号处理领域之外,带通滤波器应用的一个例子是在大气科学领域,很常见的例子是使用带通滤波器过滤最近3到10天时间范围内的天气数据,这样在数据域中就只保留了作为扰动的气旋。
在频带较低的剪切频率f1和较高的剪切频率f2之间是共振频率,这里滤波器的增益最大,滤波器的带宽就是f2和f1之间的差值。
2.典型应用
许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。这种有源带通滤波器的中心频率 ,在中心频率fo处的电压增益Ao=B3/2B1,品质因数 ,3dB带宽B=1/(п*R3*C)也可根据设计确定的Q、fo、Ao值,去求出带通滤波器的各元件参数值。R1=Q/(2пfoAoC),R2=Q/((2Q2-Ao)*2пfoC),R3=2Q/(2пfoC)。上式中,当fo=1KHz时,C取0.01Uf。此电路亦可用于一般的选频放大。 有源带通滤波器电路
此电路亦可使用单电源,只需将运放正输入端偏置在1/2V+并将电阻R2下端接到运放正输入端既可。
3.带通滤波器原理图
带通滤波器原理图该电路中事先确定R1的值,其大小与信号源内阻r1相近/参数选取原理是R4=R3,C1约等于C2,Q小于等于R1,500K》R》1K,0.5uF》C》200pF.
带通滤波器原理图
该电路中事先确定R1的值,其大小与信号源内阻r1相近/参数选取原理是R4=R3,C1约等于C2,Q小于等于R1,500K》R》1K,0.5uF》C》200pF.
二、数字滤波器+数字滤波器原理
在信号处理领域中,对于信号处理的实时性、快速性的要求越来越高。而在许多信息处理过程中,如对信号的过滤、检测、预测等,都要广泛地用到滤波器。其中数字滤波器具有稳定性高、精度高、设计灵活、实现方便等许多突出的优点,避免了模拟滤波器所无法克服的电压漂移、温度漂移和噪声等问题,因而随着数字技术的发展,用数字技术实现滤波器的功能越来越受到人们的注意和广泛的应用。其中有限冲激响应(FIR)滤波器能在设计任意幅频特性的同时保证严格的线性相位特性,在语音、数据传输中应用非常广泛。多相(Poly phase)数字滤波器是信号输入输出速率可变的一种滤波器,它广泛应用于TV-Scaler,专业的音响系统,时分复用,频分复用系统以及语音处理的子带编码中.
基本原理
导入数字滤波器的信号处理过程示于图。其中模拟信号(连续信号)
必须利用采样定理(sampling theorem)进行采样。输入信号经过模拟低通滤波即抗折叠滤波器(anTI-aliasing filter)去掉输入信号中的高频分量。经过平滑化的模拟信号再用于采样。另外D-A转换后模拟信号要经过平滑滤波器(smoothing filter)进行平滑处理,该工作可用模拟低通滤波器来完成。
另外,数字通信中使用的数字均衡器(digital equalizer)也可以视作一种数字滤波器,但是用数字均衡器直接进行数字信号处理时,就不再需要图中的A-D转换器和D-A转换器。
所谓数字滤波器,就是把输入序列通过一定的运算变换成输出序列。如上图所示。其时域输入输出关系是
若x(n) ,y (n)的傅里叶变换存在,则输入输出的频域关系是
假定|X(ejw)|,|H(ejw)|如图中(a),(b)所示,则由式得|Y(ejw)|如图(c)所示。
这样,x(n)通过系统h(n)的结果是使得输出y(n)中不再含有|w|>wc的频率部分,而使|w|<wc的成分不失真的通过。
以上便是小编今天想和大家分享的内容,希望本文内容对大家的学习有所帮助。