当前位置:首页 > 消费电子 > 消费电子
[导读]本文将讨论有关为带音乐功能的手机提供大功率和高质量音频的问题,并介绍超级电容(supercapacitor)如何能克服这些问题。这种超级电容还可以在不牺牲手机超薄外形的优势条件下实现大功率LED闪光摄影功能。

本文将讨论有关为带音乐功能的手机提供大功率和高质量音频的问题,并介绍超级电容(supercapacitor)如何能克服这些问题。这种超级电容还可以在不牺牲手机超薄外形的优势条件下实现大功率LED闪光摄影功能。

       在问题展开讨论之前,先介绍一下超级电容及其在电源管理中扮演的角色。超级电容填补了电池和普通电容之间的功率空隙,它能提供比电池更高的触发功率,并能比普通电容存储更多的能量。超级电容可以为峰值功率事件(如GSM/GPRS射频突发发送、GPS数据读取、音乐播放、闪光照相和视频播放)提供所需的触发功率,然后接受电池的再充电。其好处包括延长通话时间、延长电池寿命、闪光更亮以及音乐质量更佳。设计师还可以藉此节省空间和成本,因为他们只需要考虑满足平均功耗的电池和电源电路即可,不必关注峰值负载。

        目前音乐手机设计中的音频质量和功率问题

       目前的移动电话通常使用D类音频放大器。这些放大器在一个H桥电路中采用了两对FET来控制扬声器线圈。配置如图1所示。Q1&Q4导通和Q2&Q3关断时向一个方向驱动扬声器线圈,Q1&Q4关断和Q2&Q3导通时向相反方向驱动线圈。该电路的电源一般是3.6V的电池。带立体声音频的手机有一对放大器和扬声器。对8Ω的扬声器来说,最大音频功率= 3.6V2/8Ω = 1.6W,或立体声时为3.2W。在峰值立体声音频功率下的电池电流=3.2W/3.6V = 0.9A。因此这种情况下的音频播放可能会受到功率限制、失真和干扰的影响。

       问题1:电池无法同时满足无线数据发送和音频放大器产生的峰值功率要求,结果将导致失真。

       当用户用GSM/GPRS/EDGE手机欣赏音乐时,手机电池将无法同时提供峰值音频电流和峰值射频发射功率来响应网络访问。网络会周期性地访问手机以跟踪手机位于哪个蜂窝,并确定手机应该使用的发射功率。这种网络访问期间,在手机响应时音频放大器供电可能会下降,此时用户会听到一声“喀哒声”。不过,电池能够轻松提供约100mA到200mA的平均音频电流。

       问题2:当峰值电池电流超过1A时会产生音频噪声/嗡嗡声,这将在音频放大器电源电压上产生明显的纹波。

       如果电池组+连接器+PCB走线的总阻抗等于150mΩ,那么1A的峰值电流将在电源电压上产生150mV的纹波,1.8A的峰值电流产生270mV的纹波。电源电压中的这种纹波将给听者带来音频噪声。GSM/GPRS/EDGE发射时的峰值电流高达1.8A,因此也会产生音频噪声,在通话时用户会听到217Hz的嗡嗡声。

       问题3:CDMA、GSM&3G手机中有限的音频功率和最差的低音响应。

        不管是什么型号的手机,其音频能力和质量都取决于音频放大器的输出功率和扬声器的阻抗。在典型的手机配置中,两个D类放大器均在电池提供的3.6V电源下驱动一对8Ω的扬声器。如上所述,此时的最大音频功率为3.2W,峰值电池电流为0.9A。结果不管是通过手机的内部扬声器还是通过外部连接的扬声器/耳机提供的都将是浅薄、低功率的音频性能,低音响应性能非常有限。

图1:D类放大器的典型配置。

图1:D类放大器的典型配置。

        利用超级电容改进音乐手机设计

        图2给出了另一种采用超级电容的电路方案,它可以解决上述所有问题,并提供四倍的峰值音频功率。CAP-XX HS206就是一种0.55F、85mΩ的双单元超级电容,它用于提供峰值功率,电池则提供平均功率。升压转换器将超级电容充电至5V。结果表现为:

      . 立体声手机的峰值功率提高至2 x 5V2/8Ω = 6.25W,接近上述功率的两倍。另外,因为超级电容能够提供非常高的峰值电流,设计师可以使用4Ω的扬声器将峰值音频功率提高到12.5W,或4倍于最初的功率。

       . 0.55F, 85mΩ的超级电容在提供持续10msec时间的12.5W峰值功率且峰值电池功率为1.8W(0.5A 3.6V)时,只产生200mV的纹波。

       . 目前只能提供150mA到300mA的平均音频电流给超级电容充电的电池,也能在响应网络访问时提供峰值射频功率,同时不牺牲音频功率,故而在响应网络访问时用户不会听到“喀哒声”。

      .此外,由于射频发射而在电池电压上产生的纹波也不会反映到音频放大器上。这些纹波已被升压转换器的线路稳压电路和超级电容滤除了,从而彻底消除了217Hz的嗡嗡声。

图2:带有超级电容的D类放大器架构。

图2:带有超级电容的D类放大器架构。

       测试结果

        为了测试超级电容带来的音频改善,我们建立测试装置。在该测试装置中我们建立了如图1和图2所示的电路,其中采用一对TPA2023D1来提供立体声音频通道:

       . 在没有超级电容的情况下(图1),我们将音频放大器连接到3.7V的锂离子电池上,并驱动一对8Ω扬声器。

       . 在有超级电容的情况下(图2),我们将电池连接到降压-升压转换器的输入端,并且将输入电流限制为250mA,输出设置为5V。然后将0.55F、85mΩ ESR的超级电容跨接在降压-升压转换器的输出端,并连接到图2所示音频放大器的电源输入端。同样驱动两对8Ω扬声器,每对扬声器跨接每个音频放大器,这样可以使输出阻抗减小一半,从而使扬声器总功率再加倍。在这样的装置下,我们对以下方面进行了测试:表现为低音节拍的大功率低音爆发;在听音乐时的进行网络访问,我们把它描述为1KHz的单音,目的是使超级电容带来的改善效果更加明显。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭