当前位置:首页 > 智能硬件 > 智能硬件
[导读]0 引 言对人体的生理功能进行计算机模拟,借助于计算机仿真技术研究人体的生理特性和病理机制,是 目前 国内外生物医学工程领域的一个研究方向。对人体血液循环系统( human blood circulation system ,简称 bcs )

0 引 言

对人体的生理功能进行计算机模拟,借助于计算机仿真技术研究人体的生理特性和病理机制,是 目前 国内外生物医学工程领域的一个研究方向。对人体血液循环系统( human blood circulation system ,简称 bcs )的计算机模拟,则是国内外生理仿真领域内的研究热点。 bcs 计算机仿真技术是以生理解剖数据和生理实验数据为基础,根据血流动力学和血液流体力学规律建立起血液循环系统的数学模型,通过计算机仿真实验,可为人体血液循环系统生理研究提供定量性、预见性的 分析 和结论。

在建立人体血液循环系统整体的计算机模型,从系统量级上对 bcs 生理过程进行仿真研究方面,国内外已有过一些研究 [1,2] ,其建模 理论 主要有传输线理论、线性流体 网络 理论等。但在建立仿真模型这一环节上,仍缺乏一种直观、方便、统一的建模方法。在某些研究中是利用电传输线理论( electric transmission )  ,借用电学的概念,例如用电阻、电容、电感来表示血液的液阻、液容、液感,从而间接地推导出数学模型,很不方便。本文将一种普遍适用于流体系统动态仿真的建模方法——功率键合图法( power band graph method ),应用于对人体循环系统进行建模和仿真。

所谓功率键合图,就是描述系统功率流的传输、转化、贮存和耗散的图形表示。功率键合图建模法的基本原则是把流体系统的结构及各主要动态 影响 因素以图示模型形式加以表示,从图形模式出发,建立系统的动态数学模型,然后进行计算机仿真求解。这种建模方法于 50 年代后期由美国的佩恩特( h.paynter )教授提出,尔后由美国的卡诺普( d.karnopp )和罗森堡( r.rosenberg )两位教授作了大量工作,使之逐步趋于完善。目前,这种功率键合图建模方法已在国内外各类工程技术领域特别是液压技术领域的动态特性分析研究中得到了广泛应用。

1 功率键合图法概述

功率键合图法是对流体系统进行动态数字仿真时有效的建模工具,我们认为该方法不仅适用于工程流体系统,也同样可以应用于生物流体系统的建模和仿真,本文的研究工作就是想在这方面作一个有益的尝试和探索。为了说明功率键合图法在人体循环系统仿真中的应用,本文采用了一个简化的人体血液循环模型作为实例来进行说明。

2 系统建模和仿真

2.1 系统描述

人体血液循环系统模型如图1所示。全身的血液循环系统被抽象成 7 个区,即左右心室、主动脉、主静脉、肺动脉、肺静脉和描述身体、头和四肢的“全身循环区。血液在左右心室有节律地收缩作用下,被泵向体循环区和肺循环区。在体循环区,血液流经主动脉、全身循环区和主静脉,回到心脏;在肺循环区,血液流经肺动脉和肺静脉回到心脏。在心室和动脉、静脉和心室之间存在着防止血液倒流的膜瓣(如主动脉瓣、二尖瓣、三尖瓣等)。

图 1  简化的血液循环模型

2.2 系统的键合图模型

应用功率键合图建模方法的第一步是将原系统表达为功率键合图的图示模型。由图1的人体循环系统结构图,根据规则 [4,5] 可以得到循环系统的功率键合图 ( 图2 ) 。功率键合图由功率键、结点和作用元构成。功率键是带有半箭头和因果线的线段,表示了血液循环的流动方向。结点有0结点和1结点两种形式:0结点相当于一个集总的液压容腔(如心室腔),该容腔中血液压力为等值,而该容腔中输入的血流量等于输出的血流量,本文中的循环系统被集总为 7 部分,因此共有 7 个 0 结点;1结点相当于一个集总的液阻管路(如动脉血管),该管路中血流量为等值,而该管路上的压力降等于上流压力值减去下流压力值,本模型中的 1 结点也有 7 个。在本模型中的作用元有两种:容性元和阻性元。容性元也称弹性元,简称 c 元,画在0结点上,表示容腔的液容;阻性元简称 r 元,画在1结点上,代表了该段血管的集总液阻。

图2 人体血液循环系统的功率键合图模型

2.3 系统数学模型

功率键合图是推导系统状态方程的依据,有了它,第二步就可以顺利推导出系统的数学模型。为了便于建立状态方程,取 c 元功率键上自变量对时间的积分为状态变量,即引入每个集总容腔中的血液容量作为状态变量:

=                                                                                   (1)

其中,  是第 i 个集总容腔中的血液容量,  为输入血流量,  为输出血流量;则状态变量的一阶导数即为原来的自变量:

                                                                                                      (2)

对于每个0结点的压力,采用了线性的弹性关系式  :

                                                                                                                             (3)

此压力驱动着血液流动,决定了每个1结点的血流量:

                                                                                                            (4)

其中,  是第 i 个1结点处的血流量,  为上流压力,  为下流压力;

对每个节点都建立类似的关系式,则可以得到系统的数学模型。本模型的功率键合图有 7 个0结点,即 7 个容性元,这就决定了其数学模型是 7 阶的状态空间方程,即模型由 7 个一阶微分方程组成:

其中:血液容量 v 和血流量 q 的下标 rv 、 pa 、 pv 、 lv 、 ao 、 s 、 vc 分别代表右心室、肺动脉、肺静脉、左心室、主动脉、外周循环、主静脉各部分。

考虑到循环系统中的膜瓣作用,可以作为模型的约束条件加入到系统数学模型当中:当血液正向流动时,膜瓣阻力为零;当血液反向流动时,膜瓣阻力为无穷大,即阻止血液倒流。

血液循环是由心脏的舒张-收缩动作推动的,本文采用了心室时变液容  来表示这种舒张-收缩动作,  是时间的周期函数。本模型液容、液阻参数均参照 文献 [3] 。

2.4 系统仿真及结果

本文采用4阶定步长 runge-kutta 法来求解模型的状态方程,设定仿真步长为 0.001s ,在奔腾 586 pc 机上进行数字仿真。当加入边界约束条件,设置各状态变量初始参数之后, 7 个状态变量便以状态方程为基础被同步地展开。在每一步,心血管系统各部分的血容量 v 值根据式 (5)~(11) 被分别计算出来,同时根据式 (3) 和 (4) 可以分别计算出系统各部分的压力值 p 和流量值 q 。待仿真数据变化稳定后,即得到了每个心动周期内各部分的血液容量、血压、血流量等各项生理参数数值。

图3 (a) 、 (b) 分别给出了在两个心动周期里的左、右心室血压变化的仿真结果:每个心动周期大约是 0.8s ,左、右心室经过快速射血期后压力迅速达到最大值,整个射血期大约持续 0.3~0.4s ;之后进入心室充盈期,大约持续 0.4~0.5s ,其间心室压力平缓上升。与左心室相比,主动脉在心动周期内的压力变化相对平缓,如图 3(c) 所示,但变化幅度仍然很大( 3.99~5.32kpa )。仿真结果符合基本的生理规律。

16

01.6

t/s

(a) 左心室压力的周期变化

16

01.6

t/s

(b) 右心室压力的周期变化

16

0 1.6

t/s

(c) 主动脉压力的周期变化

图 3 心动周期内的压力变化

图4 (a) 和 (b) 分别给出了在两个心动周期里的左、右心室血液容量变化的仿真结果:可以看到左、右心室血液容量变化过程中都有一段短暂的等容收缩期和等容舒张期,在等容收缩期内心室压力急剧上升,在等容舒张期内心室压力快速下降;从仿真曲线中还可以看到每个心动周期的射血量约为 60~80 ml 。这些仿真结果都与实际的生理规律相符合  。

                                                          140

01.6

左心室血液容量的周期变化

                                                           140

01.6

t/s

(b) 右心室血液容量的周期变化

图 4 心室的容积变化

3 讨论

本文在功率键合图建模方法应用于人体生理系统仿真方面进行了初步尝试和探索,从所建模型和仿真结果来看,将功率键合图建模技术引入到人体循环系统仿真研究中是可行的,从而为人体循环系统的仿真建模提供了一种直观、方便而又通用的建模工具,为进一步将功率键合图方法应用于更为复杂的多分支人体循环系统的计算机仿真研究奠定了基础,同时也为功率键合图法这种系统动力学建模方法在生理医学仿真中的广泛应用起到了一定的促进作用。

参 考 文 献:

[1] bai jing,yinh k, jaron d   cardiovascular responses to external counterpulsation: a computer simulation [j]med&biol eng&comput, 1992,30: 317 — 323

[2] h arnkazu tsurnta, t oshira sato, masuo shiratake   mathematical model of cardiovascular mechanics for diagnostic analysis and treatment of heart failure: part 1 model description and theoretical analysis   med.&biol.eng.&comput,1994,32:3 — 11

[3] mcleod j physbe: a physiological simulation benchmark experiment [j]simulation, 1966, (12): 115-121

[4] 卡诺普 d c ,罗森堡 r c.   [m] 系统动力学—— 应用 键合图 方法 .北京:机械 工业 出版社, 1985. p1-5

[5] 刘能宏,田树军 .   [m] 液压系统动态特性数字仿真.大连:大连理工大学出版社, 1993. p20-25

[6] 何瑞荣 . 心血管生 理学 .北京:人民卫生出版社, 1987. p78-91

更多计算机与外设信息请关注:21ic计算机与外设频道

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭