当前位置:首页 > 智能硬件 > 智能硬件
[导读] 引 言微机械加速度传感器是一种典型的微机电系统(microelectromechanical system,MEMS),在航空、航天、汽车等领域已得到了越来越广泛的应用,但基于MEMS微加速度传感器技术的无线输入设备的研究和应用还不是很多

 引 言

微机械加速度传感器是一种典型的微机电系统(microelectromechanical system,MEMS),在航空、航天、汽车等领域已得到了越来越广泛的应用,但基于MEMS微加速度传感器技术的无线输入设备的研究和应用还不是很多,微加速度传感器用于输入设备的潜在优势还没有得到很好的应用。

鼠标是最常用的电脑输入设备,随着PDA、笔记本、可穿戴式电脑等便携设备的流行,传统的鼠标已经满足不了移动办公的需要。现有的滚轮式或光电式鼠标都需要一个平坦的工作表面,且自身的体积也比较大。而基于微加速度传感器的无线鼠标则完全没有这个限制,它可以自由自在的在空中移动来控制电脑;可以做得很小,便于携带,可以灵活地应用于各种场合,例如:可以做成供残疾人使用的头戴式鼠标,供讲演者使用的移动式鼠标等。

国外和港台地区有一些单位正在开展这方面的研究,例如:香港中文大学Lam等人提出了一种基于微加速度传感器的虚拟键盘鼠标系统(MIDS),能同时具备鼠标和键盘的功能;Prince在他的专利中提出了一种输入设备的方案,用连在手指上的压力传感器来感测手指的动作,从而控制电脑输入;英国伯明翰大学Humphreys等人研制了一种三维鼠标,利用回转仪可以控制电脑屏幕上三维立体的旋转。本文采用美国AD公司成熟的微加速度传感器ADXL203,并集成Nordic半导体公司最新的射频收发器nRF2401和Atmel公司的ATmega16L微控制器,开发新一代基于微加速度传感器技术的MEMS无线鼠标,探索微加速度传感器在输入设备上的应用技术,并为进一步研究多维多功能的MEMS无线输入设备打下基础。

系统原理与设计

检测原理

目前,常见的鼠标有2种,滚轮式和光电式。滚轮式鼠标是靠滚轮的传动带动X和Y轴上的译码轮转动,来感测鼠标位移的变化;光电式鼠标是用一个自带光源的光电传感器,跟随鼠标的移动连续记录它途经表面的“快照”,这些快照(即帧)有一定的频率、尺寸和分辨力,而光电鼠标的核心——DSP通过对比这些快照之间的差异从而识别移动的方向和位移量,并将这些位移的信息加以编码后实时地传给电脑主机。

而基于MEMS技术的无线鼠标是用微加速度传感器实时测量鼠标运动的加速度,经过两次积分转换为位移信号传输给主机,来控制光标的移动,从而实现鼠标的功能。

硬件设计

如图1所示,整个无线鼠标系统分为2个子系统,远端子系统和主机端子系统。

 

 

图1 无线鼠标系统结构框图

远端子系统由微加速度传感器、微控制器和nRF2401射频收发器组成。微加速度传感器采用美国AD公司生产的ADXL203微传感器,微控制器采用Atmel公司生产的ATmega 16L微控制器,该微控制器附带有8路10位可编程的A/D转换电路,可以实时地将ADXL203加速度传感器输出的加速度模拟信号转换成加速度数字信号。

ADXL203加速度传感器在加速度为0时输出电压为2.5V,为提高A/D转换的精度,本文利用ATmega 16L内置的差分放大功能,用差分信号将这2.5V电压给滤掉,并将差分后的电压信号放大到与A/D转换的参考电压相匹配。系统供电采用电器中常见的9V电池,连接一个LM78M05稳压贴片得到恒定的5V电压,供各个模块使用。

主机端子系统由nRF2401射频收发器,串行传输接口芯片和另一个ATmega 16L微控制器组成,其中,RS232串行通信接口芯片采用的是Maxim2IC公司的MAX233芯片,作用是将微控制器输出的5V TTL/CMOS电平转换为EIA/TIA-232-E电平,以便与电脑主机进行串行(RS232)通信。

软件与算法设计

鼠标在人的操纵下移动,微加速度传感器便会实时地输出鼠标运动的加速度大小和方向,ADXL203传感器的量程为±1.7gn ,电压灵敏度为1000mV/gn,这个电压信号经过差分放大5.0/1.7倍后,通过微控制器A/D转换功能变成与加速度大小对应的数字信号,加速度经过两次积分,便变成了鼠标移动的位移信号,然后,再经过编码,并通过nRF2401射频收发器将位移信号发射出去。

当加速度传感器输出电压为a时,经A/D转换得到的数字量大小为

 

 

式中[ ]表示取整数;a为加速度传感器输出的电压大小,V。ATmega 16L单片机最大采样速率可以达到15000次/秒,本文采用1000次/秒;即每1ms采样一次,每25ms便向电脑报告一次相对的位移改变量,以保证屏幕上鼠标指针运动的精确和平滑,则每一次报告的位移改变量包含25次对加速度采样的数据。可以采用近似算法来对加速度信号进行二次积分,得到位移信号。

编码的目的是将X和Y方向的位移改变量,连同鼠标按键的实时信息,按照标准的Microsoft鼠标协议要求的格式进行编码,以便最后发送到主机的信息能够被电脑正确识别,从而使电脑能正确处理发送给它的位移信号,来正确控制鼠标光标的移动等动作。表1表示的即是标准的鼠标协议规定的三字节数据包格式,第1个字节记录的是左右按键的信息和鼠标X,Y位移的最高2个字位的数据,按键按下时,对应的位置1,否则,置0;第2和第3个字节分别记录X和Y方向位移的低6位数据。位移值的范围取-127~+127,再大的位移改变量会自动溢出。

表1 Microsoft标准鼠标协议数据包格式

 

 

系统的基本组件

MEMS微加速度传感器

本文采用美国AD公司生产的电容式微加速度传感器ADXL203,如图2所示,该加速度传感器是利用各向异性刻蚀、阳极键合等硅整体加工工艺在硅材料上制造出来的,并在同一个基片上集成一些外围电路,对输出的加速度信号进行放大调制等处理后,可以同时在X 轴和Y轴2个方向输出精确的加速度信号。

 

 

图2 ADXL203加速度传感器原理图

ATmega16L微控制器

ATmega16是Atmel公司生产的基于增强的AVR RISC结构的低功耗8位CMOS微控制器,本文选用ATmega 16L微控制器,可以满足系统要求,且存在比较大的扩展性。

无线收发器件

本文采用Nordic半导体公司的nRF2401射频收发器来实现位移数据的无线传输。因为nRF2401的优异性能非常适合无线鼠标的设计,并且,其内置的多点通信控制可以为系统提供很大的扩展空间。nRF2401为2.4 GHz全球开放频段产品,采用0.18μm工艺设计。

系统和算法的Matlab模拟

AD公司给出了ADXL203微加速度传感器的Simulink模型(参见AD公司主页),本文以此为基础,构建了基于该微加速度传感器的无线鼠标系统模型,如图3所示。

 

 

图3 无线MEMS鼠标系统的Simulink模型

其中,方框内的子系统模型即是封装好的ADXL203微加速度传感器模型。模型最后将采样的加速度值存入文件中,然后,通过编程来模拟微控制器中运行的不同积分算法,用Matlab来图示各个算法的模拟结果,对于系统算法的比较和选择有很大帮助。

上文通过假设每一次加速度采样间隔内鼠标做匀加速度运动,提出了一种二次积分的近似算法,便于编程实现,可以利用鼠标系统的Simulink模型,结合编程模拟该算法,来考察它的精确性。

程序取采样周期为1ms,发送周期为25ms,最后,Matlab模拟的结果如图4和图5所示。

由图4和图5中可以看出:由于该二次近似积分算法作了很大的简化,再加上加速度传感器的噪声干扰和信号延迟、A/D转换的误差等多方面的因素,当鼠标位移较大时,存在一些误差。但当鼠标位移在12cm以内时,精确度是非常理想的,这足以满足鼠标的一般应用,更大的移动距离可以通过改变二次积分的算法来实现。

光电和滚轮式鼠标的分辨力通常用dots per inch (DPI)来表示,即每英寸(2.54cm)的点数,它表示鼠标在物理表面上每移动1英寸(约2.54cm),光学传感器所接收到的坐标点数。由于光学引擎中CMOS矩阵的像素密度和透镜的放大倍数限制,常见光电鼠标的分辨力一般在200~400DPI。对于MEMS鼠标,可以用鼠标每移动1英寸(2.54 cm)对加速度采样的次数来表示分辨力的大小。

MEMS鼠标中微控制器对加速度的最大采样速率可以达到15000次/秒,本文只需采用1000次/秒时,取鼠标1s移动的位移为10cm,则鼠标的分辨力便达到了1000×2.54/10=254DPI,已经达到了常见鼠标的分辨力,并且,更高的分辨力可以通过提高加速度的采样速率来实现,理论上,最大值可以达到15000/1000×254=3810DPI,远远高于一般光学鼠标的分辨力。

 

 

图4 X轴的鼠标实际位移与模拟位移对照图

 

 

图5 Y轴的鼠标实际位移与模拟位移对照图

结束语

本文详细讨论了基于微加速度传感器的MEMS无线鼠标的软件、硬件设计和系统构成,并给出了Matlab环境下系统的simulink模型和算法,模拟的结果证明:无线鼠标的设计是合理可行的,文中提出的二次积分近似算法是简捷有效的;文中讨论的二维鼠标的设计技术,能为进一步研究多维多功能的MEMS输入设备打下很好的基础。本文选择硬件时,充分考虑了系统向多维和多功能扩展的可能性,可以在此二维鼠标的基础上再添加一些器件,构成功能更多更完善的MEMS输入设备,例如:可以再添加一个微加速度传感器来感测Z轴的加速度,从而实现三维鼠标,可以实现对三维立体旋转等的控制;也可以利用nRF2401射频收发器内置的多点通信控制的特性,再多增加几个接收模块,可以同时控制多台主机,或多增加几个发射模块,用几个输入设备来控制同一台主机,以适应不同应用场合的需要。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭