当前位置:首页 > 智能硬件 > 智能硬件
[导读]人工智能是什么时候再次流行起来的?这可以追溯到2016年3月,当时,谷歌的神经网络驱动的人工智能 (AI)机器人 AlphaGo在围棋比赛中击败了韩国冠军李世石,在此之前,没有任何机器可以用来破解围棋的棋局。

人工智能是什么时候再次流行起来的?这可以追溯到2016年3月,当时,谷歌的神经网络驱动的人工智能 (AI)机器人 AlphaGo在围棋比赛中击败了韩国冠军李世石,在此之前,没有任何机器可以用来破解围棋的棋局。

当前,人工智能基本处于“炒作”的状态,连大众媒体都在宣传智能机器带来的希望和恐惧。这让人联想到人们都熟悉的另一种被炒作的事物:物联网 (IoT) 。在Google Trends上搜索词条IoT和人工智能,当绘制这两个词条的流行度曲线时,如图1所示,会发现二者的模式非常相似。

图1. Google Trends,IoT(红色)和人工智能(蓝色)曲线

虽然有一些物联网初创企业出现后消失了,但物联网仍然存在,并且正在逐步发展,最终必将开花结果。而物联网和人工智能之间的碰撞正与此类似。

有思考能力的物体

绝大多数人工智能应用最初主要集中在Facebook、谷歌、亚马逊等提供的互联网服务,这些服务的算法运行在配备多核CPU和GPU的服务器上,运行频率达GHz,内存达兆兆字节。紧接着,人工智能进入高性能的消费设备,出现在智能手机、自动驾驶汽车、游戏机、电视和智能音响中。虽然技术上处于“边缘”状态,并且通常被归类为“物联网”,但这些设备在物联网设备中是特殊的,因为它们仍然需要消耗大量的功耗、性能和内存,并且需要通过高带宽链路连接到互联网。

虽然物联网将几十亿的设备连接在一起,但绝大多数设备的功能都很有限。而人工智能的引入,为这些位于网络边缘的设备带来革命性的影响,但前提是需要在资源、连接能力、成本和功率之间达到适当的平衡。

有人可能会质疑:在这么小的设备上实现边缘的人工智能有什么用?

为了说明白这一点,我们将这些设备与动物大脑所能达到的智能水平进行比较。

维基百科简要介绍了几种动物的平均神经元,包括一些动物的突触(神经元连接)数量,借此可以推断其余动物的突触/神经元。如果想用深度神经网络模拟动物大脑的处理能力,如表1所示,粗略的模拟情况是每个神经元(输出)需要一个字节,每个突触(重量)需要一个字节。

表1. 模拟动物大脑所需的存储量总结:

(数据来源:维基百科,“动物神经元列表”)

小蚂蚁的强大能力

微控制器 (MCU) 的存储器范围为1兆字节到4兆字节,因此,MCU中的人工智能水平与水母或蜗牛的大脑类似。

蜗牛和水母可以自己觅食、活动、繁殖,并在感受到威胁时躲藏起来。它们管理与环境的复杂交互过程、识别模式并控制身体动作。这种智能水平对于简单的设备已经足够,如恒温器、真空吸尘器和门铃。这个例子的理念是让设备根据对环境的感知做出简单的决策。

拥有蜗牛大脑的设备可以控制一些简单的行为模式,可以识别篡改企图的门锁,或者根据衣服颜色定义程序的洗衣机就属于这种级别的智能水平。

动物(即使是那些智力较低的动物)在互动方面也比计算机的性能更高。动物通过视觉、嗅觉和触觉进行本能地交流和互动。如果设备拥有蜗牛的大脑,肯定会带来敏感、更直观、更自然的用户界面。

具有千兆字节外部存储的微处理器可以达到蚂蚁或蜜蜂的智力水平。昆虫智力的典型用例是群体效应。这意味着大量的简单机器人具有足够的智能来展示群体行为,可以执行复杂的任务,就像蚁群那样。世界上有10 quintillion (100,000,000,000亿)只昆虫,而人只有76亿 , 由此可见一大群昆虫大脑所具备的能力是多么强大。

这一应用的范围非常广泛,包括农业、城市、环境、安防、救援和国防。哈佛大学的研究人员演示了1024个机器人组成的群体,这是迄今为止最大的一个机器人群。就像蚂蚁或蜜蜂一样,1024个机器人群可以完成可观的工作任务,如运输大型物体或自主建造真人大小的结构。

实现终端智能化

在智能手机、安全摄像头和汽车等功能丰富的嵌入式设备中,机器视觉一直推动着人工智能的应用。由于有具体的用例、巨大的潜在市场和高效的算法,CNN(卷积神经网络)机器视觉可实现硬件加速。现在,几乎所有能够进行图像采集和处理的设备都集成了CNN AI加速器。

在网络端点处的小型IoT设备中实现人工智能并不容易,有很多应用都没有经过验证。对硬件加速进行适当的定义也很难,因此,许多硬件公司采取的方法是通过通用控制器上的工具和软件实现人工智能,并监控演变过程。

针对这一点,瑞萨电子最早发布了嵌入式AI解决方案 (e-AI),该解决方案使用户能够将经过训练的网络从Tensorflow或Caffe转换为其MCU可用的代码。瑞萨电子提供的工具包括一个e-AI转换器,它可以转换神经网络成为MCU工具可用的C代码,并提供一个预测转换网络性能功效的e-AI检查器。瑞萨电子已经确定了几个用例,例如预测性维护,目的是推动用户和社区的发明和创新。因此,瑞萨电子提供了瑞萨电子社区 “gadget Renesas” 开发板的教程,而且瑞萨电子美国公司一直在推动使用RZ/A1H嵌入式MPU设计GR-PEACH开发板的e-AI设计竞赛。

嵌入式AI正在不断增加

嵌入式AI正处于典型的“商业模型定义”阶段,即解决方案已被发明并被早期采用者使用,但还没有被主流大众所接受。从事这项研究的初创公司和创新公司必将竭尽全力跨越这条鸿沟。随着发展的日新月异,可以肯定,在找到有实际商业价值的用例和增长点以取得成功之前,必须有许多支点为这个目标提供支撑。

关于作者

Semir Haddad是瑞萨电子美国公司战略规划和战略业务开发总监。他在半导体行业拥有超过20年的经验,并且在微控制器 (MCU)、微处理器 (MPU) 和嵌入式软件的产品管理领域拥有超过17年丰富经验。Haddad先生在法国高等电力学院获得电子工程硕士学位,在法国ESSEC商学院获得MBA学位。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭