什么是品质因数?什么是谐振电路的品质因数?
扫描二维码
随时随地手机看文章
品质因子或Q因子是物理及工程中的无量纲参数,是表示振子阻尼性质的物理量,也可表示振子的共振频率相对于带宽的大小, 高Q因子表示振子能量损失的速率较慢,振动可持续较长的时间。
例如一个单摆在空气中运动,其Q因子较高,而在油中运动的单摆Q因子较低。高Q因子的振子一般其阻尼也较小。
Q因子较高的振子在共振时,在共振频率附近的振幅较大,但会产生的共振的频率范围比较小,此频率范围可以称为带宽。
扩展资料
根据物理学,Q因子等于乘以系统储存的总能量,除以单一周期损失的能量,也可以表示为系统储存的总能量和单位弪度损失能量的的比值。
Q因子是无量纲的参数,是比较系统振幅衰减的时间常数和振荡周期后的结果。当Q因子数值较大时,Q因子可近似为系统从开始振荡起,一直到其能量剩下原来的(约1/535或0.2%),中间历经的振荡次数。
品质因子或Q因子是物理及工程中的无量纲参数,是表示振子阻尼性质的物理量,也可表示振子的共振频率相对于带宽的大小, 高Q因子表示振子能量损失的速率较慢,振动可持续较长的时间,例如一个单摆在空气中运动,其Q因子较高,而在油中运动的单摆Q因子较低。高Q因子的振子一般其阻尼也较小。
Q因子较高的振子在共振时,在共振频率附近的振幅较大,但会产生的共振的频率范围比较小,此频率范围可以称为带宽。例如一台无线电接收器内的调谐电路Q因子较高,要调整接收器对准一特定频率会比较困难,但其选择性较好,在过滤频谱上邻近电台的信号上也有较佳的效果。Q因子较高的振子能够产生共振的频率范围较小,也比较稳定。
系统的Q因子可能会随着应用场合及需求的不同而有大幅的差异。强调阻尼特性的系统(例如防止门突然关闭的阻尼器)其Q因子为⁄2,而时钟、激光或是其他需要强烈共振或是要求频率稳定性的系统其Q因子较高。音叉的Q因子大约为1000,原子钟、加速器中的超导射频或是光学共振腔的Q因子可以到10甚至更高。
Q因子的概念是来自电子工程中,评量一调谐电路或其他振子的“品质”。
Q因子可定义为在一系统的共振频率下,当信号振幅不随时间变化时,系统储存能量和每个周期外界所提供能量的比例(此时系统储存能量也不随时间变化):
大部分的共振系统都可以用二阶的微分方程表示,Q因子中2π的系数,使Q因子可以表示成只和二阶微分方程系数有关的较简单型式。在电机系统中,能量会储存在理想无损失的电感及电容中,损失的能量则是每个周期由电阻损失能量的总和。力学系统储存的能量是该时间动能及位能的和,损失的能量则是因为摩擦力或阻力所消耗的能量。
针对高Q因子的系统,也可以用下式计算的Q因子,在数学上也是准确的:
其中fr为共振频率,Δf为带宽,ωr=2πfr是以角频率表示的共振频率,Δω是以角频率表示的带宽
在像电感等储能元件的规格中,会用到和频率有关的Q因子,其定义如下:
其中ω是计算储存能量和功率损失时的角频率。若电路中只有一个储能元件(电感或是电容),也可用上式来定义Q因子,此时Q因子会等于无功功率相对实功功率的比例。
Q因子可决定一个简单阻尼谐振子的量化特性。
低Q因子的系统(Q< ½)是过阻尼系统。过阻尼系统不会振荡,当偏离稳态输出平衡点时,会以指数衰减的方式,渐近式的回到稳态输出。其冲激响应是二个不同速度的指数衰减函数的和。当Q因子减少时,衰减较慢的响应函数其影响会变明显,因此整个系统会变慢。一个Q因子很低的二阶系统其步阶响应类似一阶系统。
高Q因子的系统(Q> ½)是欠阻尼系统。欠阻尼系统在特定频率的输入下,其输出会振荡,其振幅也会指数衰减。Q因子略高于½的系统可能会振荡一或二次。若Q因子提高,阻尼的效果也会降低。高品质的钟在敲击后可以长时间发出单一音调的声音,没有阻尼的谐振系统其Q因子是无限大,类似一个敲击后可永远发出声音的钟。若二阶低通滤波器有很高的Q因子,其步阶响应一开始会快速上升,在平衡点附近震荡,最后才收敛到稳态的值。
Q因子为½的系统是临界阻尼系统。临界阻尼系统和过阻尼系统一様不会震荡,也不会有过冲的情形。临界阻尼系统和欠阻尼系统一様,会对阶跃有快速的响应,临界阻尼可以使系统在不过冲的条件下有最快的反应,实际的系统若要求更快的反应,一般会允许一定程度的过冲,若系统不允许过冲,可能会使反应时间放慢,以提供一定的安全系数。
在负回授系统中,闭回路系统的响应常常用二阶系统来表示。设定开回路系统的相位裕度可以决定闭回路系统的Q因子,当相位裕度减少时,对应的二阶闭回路系统振荡会变大,也就是Q因子提高。
常见系统的Q因子
单位增益的Sallen–Key拓扑结构滤波器为临界阻尼系统,Q因子为)。
巴特沃斯滤波器(有最平坦通带频率响应的的连续时间滤波器)为欠阻尼系统,Q因子为。
贝塞尔滤波器(有最平坦群延迟的连续时间滤波器)为欠阻尼系统,Q因子为。
在研究各种谐振电路时,常常涉及到电路的品质因素Q值的问题,那末什么是Q值呢?下面我们作详细的论述。
1是一串联谐振电路,它由电容C、电感L和由电容的漏电阻与电感的线电阻R所组成。此电路的复数阻抗Z为三个 元件的复数阻抗之和。
Z=R+jωL+(-j/ωC)=R+j(ωL-1/ωC) ⑴
上式电阻R是复数的实部,感抗与容抗之差是复数的虚部,虚部我们称之为电抗用X表示, ω是外加信号的角频率。
当X=0时,电路处于谐振状态,此时感抗和容抗相互抵消了,即式⑴中的虚部为零,于是电路中的阻抗最小。因此电流最大,电路此时是一个纯电阻性负载电路,电路中的电压与电流同相。电路在谐振时容抗等于感抗,所以电容和电感上两端的电压有效值必然相等,
电容上的电压有效值UC=I*1/ωC=U/ωCR=QU 品质因素Q=1/ωCR,这里I是电路的总电流。
电感上的电压有效值UL=ωLI=ωL*U/R=QU 品质因素Q=ωL/R
因为:UC=UL 所以Q=1/ωCR=ωL/R
电容上的电压与外加信号电压U之比UC/U= (I*1/ωC)/RI=1/ωCR=Q
感上的电压与外加信号电压U之比UL/U= ωLI/RI=ωL/R=Q
从上面分析可见,电路的品质因素越高,电感或电容上的电压比外加电压越高。
电路的选择性:图1电路的总电流I=U/Z=U/[R2+(ωL-1/ωC)2]1/2=U/[R2+(ωLω0/ω0-ω0/ωCω0)2]1/2 ω0是电路谐振时的角频率。当电路谐振时有:ω0L=1/ω0C
所以I=U/{R2+[ω0L(ω/ω0-ω0/ω)]2}1/2= U/{R2+[R2(ω0L/R)2](ω/ω0-ω0/ω)2}1/2= U/R[1+Q2(ω/ω0-ω0/ω)2]1/2
因为电路谐振时电路的总电流I0=U/R,
所以I=I0/[1+Q2(ω/ω0-ω0/ω)2]1/2有:I/I0=1/[1+Q2(ω/ω0-ω0/ω)2]1/2作此式的函数曲线。设(ω/ω0-ω0/ω)2=Y
曲线如图2所示。这里有三条曲线,对应三个不同的Q值,其中有Q1>Q2>Q3。从图中可看出当外加信号频率ω偏离电路的谐振频率ω0时, I/I0均小于1。Q值越高在一定的频偏下电流下降得越快,其谐振曲线越尖锐。也就是说电路的选择性是由电路的品质因素Q所决定的,Q值越高选择性越好。