当前位置:首页 > 工业控制 > 工业控制
[导读]绍ADT75型数字温度传感器,它将温度传感器、12位A/D转换器、可编程温度越限报警器和SMBus/I2C总线接口集成在一个芯片中。详细描述ADT75的功能、原理及使用方法,给出该电路在温度控制系统中的应用。

摘要:介绍ADT75型数字温度传感器,它将温度传感器、12位A/D转换器、可编程温度越限报警器和SMBus/I2C总线接口集成在一个芯片中。详细描述ADT75的功能、原理及使用方法,给出该电路在温度控制系统中的应用。 
关键词:数字温度传感器;ADT75;温度控制系统


1 引言
    ADT75是ADI公司推出的数字温度传感器,内置1个高度集成的温度传感器,其额定工作温度范围为-55℃~+125℃,能够对温度进行准确测量。其内部还包含1个12位的ADC,用来监测并数字化温度值,其分辨率可达0.0625℃,功耗低,工作电压范围是3 V~5.5 V。若工作电压在3.3 V,其典型电流值为300 μA;在关断模式下,典型电流值仅为3μA。ADT75是一款完善的数字温度传感器,集传感器和模数转换器于一体,可大大简化温度测试系统的设计,提高系统的集成化。
    ADT75的主要特点如下:
    内含12位A/D转换器;
    温度误差最大是±1℃,温度分辨率0.0625℃;
    SMBus/I2C兼容接口;
    工作温度范围为-55℃~+125℃;
    超温指示器;
    采用关断模式降低能耗;
    在3.3 V工作电压下的功耗典型值为69μW;
    8引脚MSOP和SOIC封装。

2 ADT75的引脚排列及功能
    ADT75的引脚排列如图l所示。各个引脚的功能如表l所列。

3 ADT75的工作原理
    ADl75的内部结构如图2所示。主要包括温度传感器、∑一△调节器、4个数据寄存器(温度数据寄存器、配置寄存器、THYST定值寄存器和TOS定值寄存器)和1个地址指针寄存器、数字比较器、SM-Bus/I2C串行接口等。其工作过程如下:温度传感器进行温度采集,产生与绝对温度成一定比例的精确电压,并与内部参考电压进行比较,输入精确的数字式调节器中,转换为有效精度为12位的数据。被测量的温度值与限定值比较,如果测量值超限,则OS/ALERT引脚输出超限信息。

    ADl75包含5个寄存器:4个数据寄存器和1个地址指针寄存器。配置寄存器是惟一的8位数据寄存器,其余的均是16位。温度数据寄存器是惟一的只读数据寄存器。上电时,地址指针寄存器被设置为Ox00,且指针指向温度数据寄存器,具体描述见表2。

    (1)地址指针寄存器
    该8位写寄存器存放指向4个数据寄存器之一的1个地址,并选择单步模式。采用单步模式可以减少电能消耗,当单步模式启动时,ADT75立刻进入关断模式。当VDD为3.3V时,电流消耗为3μA;当VDD为5 V时,电流消耗为5.5μA。P0和P1选择被写入或读出数据字节的数据寄存器。PO、Pl和P2通过向这个寄存器写入04H来选择单步模式。该8位寄存器其余位都设置为零。寄存器地址选择见表3。

    (2)温度数据寄存器
    16位只读寄存器存储由内置温度传感器测得的温度值,以二进制补码的方式存储,以MSB为温度标记位。读寄存器时,先读高8位,后读低8位。
    (3)配置寄存器
    8位可读/写寄存器为ADT75配置各种模式,如关断、超温中断、单步、SMBus报警使能、OS/ALERT引脚极性和超温错误队列等。
    (4)THYST定值寄存器
    这个16位读/写寄存器存放2个中断模式下的温度滞后限定值。温度限定值以二进制补码的方式存储,用MSB作为温度标志位。当从这个寄存器读数时,先读高8位MSB,后读低8位LSB。THYST的缺省设置极限温度为+75℃。
    (5)TOS定值寄存器
    这个16位读/写寄存器以2个中断模式存放超温限定值。温度限定值以二进制补码的方式存储。当从这个寄存器读数时,先读高8位MSB,后读低8位LSB。TOS的缺省设置极限温度为+80℃。

4 典型应用
   
温度是测控系统中主要的被控参数之一。实际应用中,经常需要控制温度使之保持在某一范围内。以往,在实际测控系统中,多采用热敏电阻器或热电偶测量温度。这种温度采集电路有时需要冷端补偿电路,这样就增加了电路的复杂性;而且电路易受干扰,使采集到的数据不准确。
4.1 应用比较
    在传统的温度测控系统中,用热电偶或热敏电阻器采集温度,再由前置放大电路将检测到的微小信号转变为ADC可转换的信号,同时经过冷端温度补偿后进行A/D转换,这样才能把模拟温度信号数字化,如图3所示。

    这种传统电路的特点是需要的器件多,电路所占空间大,电路易受干扰,调试工作量大,电路集成度差,误差大。
    ADT75是一款完善的数字温度传感器,集传感器和模/数转换器于一体。采用ADT75大大简化了温度测试系统的设计,电路集成度高,所占空间小,精度高,大大减少了调试工作量。
4.2 应用实例
   
直冷式电冰柜的机件相对较少,设备不容易出故障,而且制冷相对迅速,它是利用冰柜内空气自然对流的方式冷却食品的。其蒸发器常常安装在冰柜上部,蒸发器周围的空气要与蒸发器产生热交换,空气循环往复自然对流,从而达到制冷的目的。在实际使用中,电冰柜的温度应保持在设定值,这就需要采用温度测控系统进行自动调节。温度控制原理是根据蒸发器的温度控制制冷压缩机的启停、使冰柜内的温度保持在设定的温度范围内。
    在直冷式电冰柜温度测控系统的设计中,以AT89C51型单片机为核心,采用ADT75构成温度控制电路。这种电路硬件设计简单且功耗较低,实用性强。ADT75与AT89C51的硬件接口电路如图4所示。

    在电路中,将ADT75的SMBus/I2C串行数据输入/输出端SDA与单片机的P11脚相连,串行时钟输入端SCL由P10脚依次发出高低电平,lO kΩ电阻为漏极开路时的上拉电阻器;ADT75采用比较模式,当OS/ALERT输出设置为低电平时,与其相接的蜂鸣器进行温度超限报警。设计中A2、Al和A0接地,则SMBus/I2C的地址为1001000。系统根据测得的温度值,由单片机内部完成PID运算,然后通过外部温度控制装置控制制冷压缩机的启停,进行温度的调节,使电冰柜内的温度保持在某个设定的范围内。

5 工作方式
5.1 串行总线的协议操作方式
   
主设备(如单片机等,见图4)通过设置开始条件启动数据转换,由ADT75串行数据线SDA定义高到低的转换,同时串行时钟线SCL一直为高电平。
    ADT75在第9个时钟脉冲之前拉低数据线,等待数据读出或写入。如果R/W位是0,将数据写入ADT75。如果R/W位是1,将从ADT75中读数据。
    数据按照9个时钟脉冲序列的顺序传送到串行总线上。在写入模式下,在第10个时钟脉冲到停止状态期间主设备将拉高数据线。在读出模式下,在第9个时钟脉冲之前的低电平期间单片机将拉高数据线。
5.2 ADT75的写入方式
    ADl75有2种不同的写入方式。
    (1)寄存器写地址
    为了从特定的寄存器读数据,地址指针寄存器必须包含该寄存器地址。如果没有包含该地址,必须通过执行单字节写操作将正确的地址写入地址指针寄存器。
    (2)向寄存器写数据
    配置寄存器是8位,因此只有数据的1个字节能写入这个寄存器。写到配置寄存器的数据字节包括串行总线地址,数据寄存器地址写到地址指针寄存器中,接着数据字节写入所选择的数据寄存器。THYST寄存器和TOS寄存器都是16位,所以可将2个数据字节写入这些寄存器中。
5.3 ADT75的读出方式
   
对于配置寄存器,以1个单字节数据的方式从ADT75中读数据。对于温度数据寄存器、THYST寄存器和TOS寄存器,以1个双字节数据的方式从ADT75中读数据。从其他寄存器读数据,需要对地址指针寄存器设定相关的寄存器地址。
5.4 超温模式工作方式
    ADT75有2种超温模式,即比较模式和中断模式。
    (1)比较模式
    在比较模式下,当测量温度降至被存放在THYST定值寄存器中的温度限制值以下时,OS/ALERT指针将再次恢复到无效状态。在比较模式下,设置ADT75为关断模式时,无需重新设置OS/ALERT的状态。
    (2)中断模式 
    在中断模式下,只有从ADT75的寄存器读数据时,OS/ALERT引脚才进入无效状态。在被测温度低于存放在THYST定值寄存器中的设定值时,OS/ALERT引脚返回到有效状态。一旦OS/ALERT引脚被重新设詈,只有当温度高于TOS定值寄存器中的设定值时,它才将再次回到有效状态。
5.5 多电路工作方式
    在1个主设备的控制下,最多可将8个ADT75连接到一条SMBus/I2C总线上。像所有的SMBus/I2C兼容设备一样,ADl75有1个7位串行地址,这个地址的高4位被设置为1001;低3位由引脚5、引脚6和引脚7设置(即A2、A1和A0),有8种不同的地址选择。如果不需要多个ADT75共同工作,那么A2、Al和A0引脚接地。

6 结束语
   
在直冷式电冰柜温度测控系统的硬件设计中,ADT75完全能够满足温度采集的要求,使用起来也很方便。由于温度检测电路的外部接口电路简单,串行接口占用单片机口线少,且性能优良,功耗低,可靠性好,所以设计和运行都达到了非常满意的效果。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭