当前位置:首页 > 工业控制 > 工业控制
[导读] 人机界面产业在长期的蕴酿之中,由苹果计算机(Apple)之iPhone手机正式呜锣揭开序幕、粉墨登场、全场惊讶连连、涟渏波动,久久不能平息,演出者与观众之间眉来眼去,秋波迭送,似乎两厢情愿,深情日款,大有一时

      人机界面产业在长期的蕴酿之中,由苹果计算机(Apple)之iPhone手机正式呜锣揭开序幕、粉墨登场、全场惊讶连连、涟渏波动,久久不能平息,演出者与观众之间眉来眼去,秋波迭送,似乎两厢情愿,深情日款,大有一时天雷勾动地火,一发不可收拾之势。

      触控技术在与蓝天为幕,昭日引导,响亮的前进曲之氛围中,引发广泛之回响,确实为近年来产业界罕见的现象,因为:

      (1)新人机界面引进之新产品概念在一片了无新意之3C产品中活化了生机。

      (2)模块化设计概念下,日渐褪色之系统整合创意的末梢神经突然恢复知觉,让系统设计者在模块组合经验活化创意,开始擦脂抹粉。

      (3)新技术之引进连动出整个上下游产业链重新组合换位,俱认机不可失,期待美人青睐!

      (4)应用层面无远弗届,NB、手机、PDA,掌上型游戏机、MP3音乐播机,导航系统、ATM提款机等皆受全面之冲击,宛如巨星临降,万人空巷。

      以下将就主要触技术做介绍比较及产业现况做简介,并针对目前最夯之多指应用所需之技术、专利、整合、应用等做更深入之讨论。

一、主要触控技术简介

      目前市面上触控技术主要如下几种,分河饮水,各立门庭:

      (1)电阻式:藉由压力接通在上下二层电阻网络,由电阻分布以决定压力点之位置。目前市面上有四线、五线、六线、七线、八线式各种组合,各类均有其优缺点,但以四线及五线最为普及。电阻式技术原理简单,门槛低,上下游整合完整,但无法进行多手指侦测,且反应较不灵敏,寿命较短为其主要缺点,目前手写式手机屏幕多为此类。下表比较各式电阻式之不同,如表(一)。

表(一)、电阻式触控面板技术比较

表(三)、触控面板主要应用:

      由表(二)及表(三)基本上就触控面板可得结论如下:

      (1)中大尺寸仍以电阻式面板为主,主要是其成本较低但功能有限,若需较多功能,则红外线与电磁式将为主流。

      (2)小尺寸或可携式产品初期仍会以电阻式为主,但由于i Phone之风潮,投射电容式面板之比重将持续增加,甚至全面取代。

      (3)复合面板(电阻式+电容式,或电阻式+电磁式,或电磁式+电容式)将成为各家商研发之主要方向。(如N-Trig开发,电磁式与电容式组合,WACOM的电磁式+电阻式,但贵。)

      (4)除多手指侦测外,手写或笔写或手笔并进亦将是未来主要之研发重点。2[/!--empirenews.page--]

二、触控产业的主要关键

      触控产业其实行之有年,无声无息直到苹果计算机 (Apple) i Phone的多手指应用方才引爆,平地一声雷,因此集三千宠爱于一身,尤其是投射电式面板。其它面板技术只在突破以既有之基础实施多手指应用。而投射电容触控技术本也非新技术(原笔记型计算机之触控板鼠标即是),以下将讨论投射电容式面板在应用却也面临一些关键问题:

      (1)透光感应表面的技术。

      可透光感应面基本上是上下二层电极矩阵形成,中间以绝缘层隔开以形成电容,结构甚为简单。触控面板基本上是由轻薄透明之感应面与一控制IC以及IC内部相对应之软件 (Software)及韧体(Firmware)组合而成。导电电极而溅镀或蒸镀透明导电材料(目前都为ITO,氧化铟锡)于透明基材上,一般为玻璃或PET薄膜以Film/Film、Film/Glass或Glass/Glass三种结构上下贴合而成。感应面的主要规格为透光率与耐久性,玻璃上之溅镀或蒸镀,原为面板厂所熟知,因此传统中小尺寸面板厂也积极投此一领域,然玻璃厚、重、贵且易碎,显然并非长期饭票。因此电阻式触控面板业便挟其在光学PET溥膜的经验挺进。

      (2)控制IC之来源。

      不同于电阻式面板,原理简单、门槛低,其感应控制电路无需独立控制IC,而多由系统上之主控CPU以软件处理,投射电容式目前尚无法由系统上的主IC处理而须独立IC处理,因此也吸引国内外多家IC设计公司相继投入,如美商新思(Synaptics)、塞普拉斯 (Cypress) 及台湾升达 (Sentelic)、义隆 (Elantek) 等等。但投射电容式触控IC因其门槛相当高,若非具相当研发实力恐难完成。其主要技术门槛在 (a)系统噪声之处理 (b)手指上之汗、油、膏、污之克服 (c) Cover lens或机构保护面之厚度使感应灵敏度之降低 (d)人体体质不同造成系统稳定度降低 (e)在小尺寸应用上手指分辨率低使光标分辨率不易提升,往往使Demo容易,量产困难,若无长期经验之累积是无法克服量产之稳定问题。目前只有美商新思(Synaptics)与台湾升达(Sentelic) 在此方面有长期之基础,其它厂商恐将需渡过一段学习曲线。

      (3)系统整合的关键。

      投射电容式本身最大之障碍在于系统整合与应用时的状况,毕竟面板终究得安装在屏幕面板,其噪声与系统其它电路所产生之噪声极易对触控产生干扰,造成定位不准,若只是手势之应用或许可行,若未来手写与指针之应用、控制IC便是关键,第二:因系统机构的设计致使Cover lens变厚,原则上问题将益形严重。另外,模块厂是否需含客制化Cover lens亦是产业供应链的一大挑战。最后,当面板整合到LCD屏幕面板上之贴合,亦将考验制程的能力,因为目前面板贴合良率本身也只有80%~85%而已,另一段的贴合势必将使良率再低,而且尺寸愈大、贴合愈难。

      (4)产业上下游整合模式。

      表(四)举例粗分之触控面板产业链,上游其原本都掌握在日本业者身上,中游材料加工则在日本与台湾,下游面板之贴合、压合、测试,则在台湾,少部份在大陆完成,由于投射电容式面板于面板加工制造,系全新领域,多数仍在摸索与试车阶段,良率之提升仍有一段路途。而面对全新投射电容式面板,目前之面板厂均无整合、测试与系统支持之经验,此段仍必须由IC设计厂来执行,而IC厂本身有无整合前段制程之能力仍待考验,届时势必率动整个上下游产业链之定位与重组,约在2009年Q2后将更为明朗。

表(四)、触控面板产业链

资料来源:拓墣产业研究所、升达科技整理

表(五)、全球触控面板主要厂商

资料来源:拓墣产业研究所、升达科技整理

      (5)专利保护壁垒

      十多年来在触控面板的发展,各家在专利上的布局已使这个产业地雷布满各式触控面板,当然其原创者皆会有所保护。单就投射电容式面板相关之专利即有100多种。后继者几乎完全没有插手的空间,目前在投射电容面板主要掌握在美国Synaptics(新思)、苹果计算机(Apple)及台湾升达(Sentelic)科技手上,此三家之专利布局绵密,几乎涵盖现在与未来发展所需的技术。下表反应了目前可查到之专利数量。

表六、触摸屏相关专利统计

(不含申请中之专利)

      举个简单例子,触控板上要单击/双击、要多手指侦侧、要在板子上做滑动的动作,对不起这些都已有专利,多手指侦测后要做其它翻页动作,那更是苹果计算机(Apple)的专利,其它更底层技术性的便不在话下了。目前投射电容式尚未有多家及大量产品投入,可见未来之不久,一定刀光四射、狼唣不止。系统设计者必须凌波微步、左躲、右闪!3[/!--empirenews.page--]

三、多手指侦测应用以及系统整合

      丑媳妇终究是要见公婆,技术终归要上台面,入应用。自从i Phone多手指应用之后,此项功能已成触控面板之主要功能,当然手写、笔写、单击、双击、卷动等传统之功能,更不在话下,因此针对各不同应用所需之技术趋势也便可想而知,成本则是另一重要考量,已不再赘言。就多指之应用而言,可想而知,只有投射电容式与红外线式,可做多指侦测并分占中小尺寸与大尺寸之市埸。有了多指侦测后,其它单击、双击、卷动、手写、笔写等也只是软件或韌体之应用而已。各式各样的屏幕上之变化也大都可由软件或韌体程序完成,因此基本问题便可带出:何种系统的架构整合最易、效率最好、成本最低、壁垒最少?以上考虑是系统业者最需深思之课题,因此我们可清楚地推论其最终之轮廓:

      (1)是塑料而不是玻璃。

      虽塑料(压克力,光学胶,PET Film)的光学特性与耐刮耐久性不如玻璃,且常需低温制程,但玻璃厚、重、加工难、制程贵、不耐摔,在长期成本压力之下,塑料仍是首选,尤其是PET Film(PET光学薄膜),因可导入Roll-to-Roll制程,故相当看好,其光学特性也在可接受范围,且传统电阻式触控面板厂亦有长期的经验,上下游整合完整,最终相信应是PET光学薄膜Film on Film的结构。

      (2)手势辨识在控制IC,不在系统端。

      一般是将手指的坐标传到系统,再由系统藉软件程序辨识手势,虽属可行但反应速度较慢,尤其是多指触控或手输入时更为明显,而当X、Y轴之讯号受外部杂干扰时,坐标的信息将更不可靠,造成手势辨识的困难,使得更复杂之手势无法支持,像i Phone也只有滑动与Zoom-in/Zoom out之动作而已。另外以目前之扫描方式(红外线或投射电容式或有建置X、Y轴扫描者),为了降低扫描线的数目都采所谓Load Grounded的做法,此一做法会造成不同之二手指坐标,而只有一个相同坐标,系统亦不可辨识。而IC内可用其它额外讯号辅助判断,此额外讯号通常因算法不同而形成各家不同整合之困难。

      (3)软硬兼施而不是吃软不吃硬。

      由于投射电容式面板门槛高,因此很难以纯软件/韌体的方法直接解决,更非一般低阶8bit MCU可有效解决,尤其需平行处理不同复杂讯号时,硬件方案与软件方案需做适切的分割搭配,方能降低高速CPU的耗能。这也是目前一般面板整合者相信用软件即可解决迷思。

      (4)善事必先利其器(客制化、开发之软/硬件开发工具)。

      终端系统整合工程师,一般并非都熟稔面板特性而为了应付多方使用情境的客制化需求,控制IC提供者是否提供一套,完整方便的软/硬开发工具,是系统整合者决定其解决方案的开发时程与品稳定度的重要关键。

四、结论

      就以上之讨论,在整个触控技术在现在产业链,约可做成如下几点结论:

      (1) 目前触控面板仍以小尺寸之应用主(尤其是多指触控)而投射电容式面板势将成为主流而逐渐取代电阻式方案。

      (2) Demo不等于量产,目前多指应用之解决方案,Demo者多但可量产者少,其间仍有相当大的距离。

      (3) 控制IC厂商本身的研发能量决定未来/电子/产品使用情境的发展。

      (4) 选择适当面板技术是系统厂商最重要量。

      (5)与控制IC厂商的合作关系攸关触控面板厂商之生存。

      (6)虽困难度高,但垂直整合势在必行。

      总结触控面板技术,就多指触控其技术成本及普遍应用性来看,目前以投射电容式为发展主流,但仍有诸多的障碍需克服解决,以上提供给触控产业界朋友做一些参考。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭