当前位置:首页 > 工业控制 > 工业控制
[导读]现代工业过程中面临越来越多的结构复杂的多变量系统,传统的单变量PID控制方法已无法满足要求,为了解决多变量系统的控制问题,以两输入两输出系统为例,提出一种基于阶跃响应的多变量频域模型辨识方法,并将此种方法与对角矩阵解耦控制方法相结合应用于多变量PID控制系统中。最后对滞后环节近似部分和对角矩阵解耦方法进行仿真验证。结果表明该方法能够更好的控制系统变量,误差减小50%以上。

随着现代工业的发展,越来越多的工业系统、社会和经济系统己不再局限于单变量系统,而是结构复杂,模型不确定的多变量系统。传统控制方法虽然在很大程度上能满足工业系统的控制要求,但对一些具有强耦合性、不确定性、非线性、信息不完全性和大滞后性等特征的工业控制系统,传统控制方法对其无法得到满意的控制效果所以多变量系统控制的研究越来越受到重视。而要对多变量系统进行控制,尤其是实施一些先进控制算法,如预测控制、内模控制等都是基于模型的,所以系统的模型是实施多变量控制的前提条件。

1 模型辨识方法


    图1是一个典型的二变量控制系统框图。从图1看出,模型的辨识就是辨识出G11(s)、G21(s)、G12(s)、G22(s)这4个传递函数。这里采用基于频域的阶跃响应方法进行辨识。对于PID控制系统,其控制器输出u和过程输出y之间的传递函数G(s)表示为:
   
    将其离散化后用jω代替s变为
   
    对于过程频率响应,取ωi的范围为[-π,0]能够充分体现系统频率特性,为了获得更精确结果,把π分成M个区间。计算ωi值
   
    其对应的相位角
   
    由于控制过程中大部分系统可以用二阶加滞后模型代替,所以设模型传递函数为
从而得出传递函数模型参数。
    对于图1中的典型系统,当系统稳定后,断开u1、u2,给u2加入阶跃信号,记录下y1、y2的值,然后代入式(2)~式(12)辨识出G11(s),G21(s)。同理,u2加入阶跃信号,令u1=O,辨识出G12(s),G22(s),从而系统的传递函数矩阵求出
   

2 滞后环节近似
    由于得出的模型含有滞后环节,而滞后环节不能够直接解耦,所以比较各种近似方法,通常近似方法为:一阶pade近似、二阶对称pade近似、二阶非对称Pade近似。文献对其多次进行实验发现一阶Pade逼近在初始时刻有波动,但在滞后较大的情况下逼近效果较好,这是因为Pade逼近引入零点的原因,二阶对称Pade逼近效果最差,而且二阶对称Pade逼近除了在初始时刻有波动还产生了超调量。二阶非对称Pade逼近调节时间较短,且无明显的超调量,但是波动较大。因此采用移位处理和二阶泰勒级数展开即全极点近似法
   
    通过仿真验证发现全极点型近似方法由于避免引入零点,所以误差最小,其要比Pade逼近调节时间短,而且没有超调量,即能更好的获得阶跃响应特性。

3 解耦控制
    多输入多输出系统内部结构复杂,存在有一定程度的耦合作用,对于这种存在耦合的对象,工业过程控制要求系统能够安全稳定地运行,又有较好的调节性能,能以较小的误差跟踪设定值的变化,并使稳态误差为零。为了达到高质量的控制性能,必须进行解耦设计。如何把它们间的耦合作用去掉变成独立的单变量系统进行控制是解决多变量控制的一种重要的方法,去掉耦合的过程就是解耦。其中常用的解耦方法有对角矩阵法、逆Nyquist曲线法和特征曲线法。其中对角矩阵法在过程控制领域中起到很大作用。
   
    式(15)是一个多变量系统传递函数矩阵,对角矩阵解耦就是将耦合对象传递函数矩阵变成一个对角形矩阵的形式即式(16)所示,除主对角线上的元素外,其他元素均为零。这样输入U(s)与输出Y(s)就成为一一对应关系,以达到便于控制的目的。
   
假设为了使传递函数矩阵转变为对角阵,在U(s)的输出端加入一个n×n的矩阵D(s)

    由于采用上文所提的方法辨识出的模型是奇异矩阵的几率很小,以二输入二输出系统为例,假设G(s)为一个非奇异方阵,则有逆矩阵存在。针对PID控制器的解耦控制系统框图如图2所示。


加入解耦控制器后系统转化为
   
对于式(20)可以利用单变量的控制方法对其进行控制。

4 解耦系统仿真
    应用MATLAB软件对解耦控制进行仿真验证。假设传递函数矩阵为
   
    首先采用全极点近似使其转化为线性系统,采用全极点近似后式(21)变为
   
    以式(21)中G11,G22为例进行全极点近似,其仿真结果如图3所示。


    从上面的仿真结果看出近似前后输出曲线基本一致,说明全极点近似方法能够很好体现原系统的性能。
    为了求的解耦矩阵,对式(22)取逆并且与相乘求的D(s)
   
得到解耦矩阵后,通过仿真分析解耦后系统间的耦合程度,从输入端u1、u2分别加入阶跃信号后解耦前后系统输出曲线如图4所示。从图中可以看出,解耦后两个回路之间的耦合程度大大降低,有效减少了回路间的干扰,控制系统的性能得到大大提高。



5 结论
    通过理论和仿真实验证明,采用频域辨识和对角矩阵解耦的控制方法取得很好效果,为系统能够长期稳定的运行提供保证。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭