当前位置:首页 > 工业控制 > 工业控制
[导读]温度控制系统在工农业中应用广泛,但大多数的温度控制系统存在一定的问题,为了提高温度控制系统的稳定性和精确性,提出一种基于FPGA的温度自动控制系统。该系统设计是以MCS-5l单片机为核心,结合由精密热电偶摄氏温度传感器和精密A/D转换器构成的前级信号采集电路和由FPGA、双向可控硅、内置过零检测的光电耦合器构成的后向功率控制电路。该温度控制系统采用分段PID控制算法,通过调功法用制冷片控制木箱内温度,能够在5~35℃范围内自由设定木箱内温度,稳定状态下温度在±1℃范围内波动。

温度控制系统应用广泛,温度是一个重要而普遍的热工参数。常规的温度控制方法是设定一个温度范围,超出设定允许范围即进行温度调控。这种方法实现简单、成本低,但控制效果不理想,控制温度精度不高、达到稳定点的时间长,因此,只能用在精度要求不高的场合。而采用PID算法进行温度控制,具有控制精度高、能够克服容量滞后的特点,适用于控制品质要求高的控制系统。
    单片机作为控制系统的核心部分,广泛应用。利用单片机控制温度系统,对环境检测具有极高的灵敏度,能够实时实现温度调节,且效率极高。

1 系统总体方案设计
    该温度控制系统的前级采用LM35型模拟集成温度传感器来采集温度信号并转化为电压信号,再经过前级放大后送入ADS7886采样输出数字信号,将得到的数字信号送入单片机,单片机通过对采样信号和用户输入信号的分析自动选取合适的PlD系数并计算出相应的加热(或制冷)波形的占空比系数,接着将占空比系数送入FPGA,由FPGA内部构建的DDS读取相应的占空比并转化为波形输出,驱动制冷片工作,从而实现木箱内部温度的自动控制,系统总体设计框图如图1所示。该系统设计采用大屏幕点阵式LCD和按键进行人机交互,使得系统操作简单快捷,同时LCD还可实时显示测量得到的温度值,并绘制出坐标图像,统计信息明确直观。



2 系统硬件设计
2.1 前级采样电路

    LM35是电压输出型温度传感器,当温度在0 ℃时输出电压为零,当电压每上升1℃输出电压便增加10 mV。较小的电压对A/D采样的精度会造成比较高的影响。所以在LM35输出端连接一个同相放大器。考虑放大时的精度和对共模干扰信号抑制需要,这里选用精密高共模抑制比的运算放大器OPA277。由于实验要求测量精度为0.1℃,要求在5~35℃范围内至少取样300个点,因此,至少选用9位的A/D转换器进行采样才能满足实验要求,考虑到功能扩展的需要,这里选用12位高精度的串口ADS7886来实现。


2.2 加热致冷切换控制电路
    系统必须实现加热和制冷2种功能,制冷片当电压极性相反时,其制冷面和散热面也会交换。则系统电路必须包含加热制冷切换模块,该模块采用2个直流继电器来实现,具体电路如图3所示。


2.3 FPGA设计
    FPGA是该温度控制系统设计的核心,在FPGA中实现加热制冷切换控制模块以及A/D采样模块2个核心部分,在加热制冷控制切换模块中,采用2个继电器控制半导体控制制冷片两端电压极性,A/D采样模块采用状态机控制A/D转换器对放大器OPA277的采样过程。具体电路如图4所示。由以上实验数据可以看出,温度读数精度可以达到0.1℃,同时设定的温度读数和最终结果最大偏离为1.1℃,说明该温度自动控制系统精度较高。同时通过第2组数据可以看出,当温差大于15℃时达到指定温度所需的时间只要148 s,说明该系统设计平衡温度时间较短。



3 系统软件设计
    该系统充分利用了FPGA的强大功能,将LCD接口电路,键盘接口电路,信号串并行转换电路,以及DDS信号发生器全部构建在内部,使得硬件连接简单明了,外部硬件只有2个模块:温度信号采集转换模块和制冷片驱动模块。由于外设相对简单,调试时候相当方便,同时可以方便修改FPGA内部结构对系统的功能进一步修改和扩展,使得系统功能更强大,应用范围更广泛。图5为该系统软件设计流程。



4 测试数据与分析
    考虑到外部环境的变化会对系统调温造成一定干扰,因此将装置放在装有空调的实验室进行调试,同时为了精确测定木盒内部温度,以便选择相应的PID控制系数,选用高精度的数字温度计同时对盒内温度进行实时测量。表1给出了实际测试的比较结果。



5 结束语
    本系统软件设计的关键在于控制算法。PID结合拟合分段算法必须尽量减少其他因素的影响,精确确立相应的PID参数。而硬件设计应选用高精度高速器件,以获得足够快的速度与足够高的精度,绝热和散热是设计成功的决定因素。木盒绝热性差,盒内温度受到外界影响大,只有绝热好,温度变化才能理想。此外,制冷片热端的散热对系统也有很大影响。系统测量的误差来源主要是温度传感器在测量温度时存在非线性误差,前级放大电路引入新的干扰,A/D采样时带来的量化误差等。另外,由于后级功率控制电路中的光电耦合开关具有一定的功率损耗,导致控制加热或升温时间内达不到设定的功率,以致温度调节存在误差。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭