当前位置:首页 > 工业控制 > 工业控制
[导读]摘要:实时时钟在工业系统中具有良好的应用前景。本系统以微控制器LPC2131为核心控制器,控制内部实时时钟,实现对秒、分、小时等各个时间寄存器的准确操作,通过串口将采集到的数据发送到上位机。本文详细给出硬件设

摘要:实时时钟在工业系统中具有良好的应用前景。本系统以微控制器LPC2131为核心控制器,控制内部实时时钟,实现对秒、分、小时等各个时间寄存器的准确操作,通过串口将采集到的数据发送到上位机。本文详细给出硬件设计总体框图、设计原理和软件实现的方法,得出了实验结果。这种实时时钟的控制方法,很容易应用到现代工业以及各种智能化应用系统中。
关键词:LPC2131;实时时钟;串口

引言
    嵌入式技术是当前发展速度最快、应用最广、前景最好的信息技术领域之一。目前,社会上嵌入式系统人才短缺的现状给各大高校带来了契机,很多高校的电子信息工程专业都开设了相关的嵌入式课程。嵌入式系统主要由两部分组成:一是硬件,二是软件。本设计是基于32位ARM7TDMI-S核的LPC2131微控制器,内部带有独立电源和时钟源的实时时钟,在节电模式下极大地降低了功耗。通过硬件和软件的结合操作,实现了对内部各个时间寄存器的秒、分、小时、日、月、年和星期的控制,能够将采集到各个时间数据通过串口发送到上位机上,达到实时系统的显示功能。此设计便于形成专用的时钟控制的嵌入式装置,也能够嵌入到各种智能化应用系统中。

1 系统工作原理
    该系统主要基于LPC2131为核心的主控电路,由JTAG下载模块、外部时钟源模块、ARM7微控制器模块、串口通信模块(RS-232)等电路组成。LPC2131微控制器内部带有实时时钟模块,可以由外部独立的时钟振荡器来提供时钟源或由基于内部VPB时钟的可编程预分频器来提供时钟源,达到对时钟寄存器秒、分、小时、日、月、年和星期的控制。同时将控制的数据通过串口与PC机通信,来实现结果,将数据显示在PC机上。
1.1 实时时钟内部结构介绍
    LPC2131内部实时时钟结构框图如图1所示。实时时钟包含混合寄存器、时间寄存器、时间计数器、报警寄存器和预分频器等。其中,混合寄存器包括:中断位置寄存器(ILR)、时钟节拍计数器(CTC)、时钟控制寄存器(CCR)、计数器递增中断寄存器(CIIR)、报警屏蔽寄存器(A-MR);时间计数器包括:秒寄存器(SEC)、分寄存器(MIN)、小时寄存器(HOUR)、日期寄存器(DOM)、星期寄存器(DOW)、年寄存器(DOY)、月寄存器(MONTH)、年寄存器(YEAR);时间寄存器组包括:完整时间寄存器0(CTIME0)、完整时间寄存器1(CTIME1)、完整时间寄存器2(CTIME2);报警寄存器包括:秒报警值(ALSEC)、分报警值(ALMIN)、小时报警值(ALHOUR)、日期报警值(ALDOM)、星期报警值(ALDOW)、月报警值(ALM-ON)、年报警值(ALYEAR);预分频器包括:预分频值整数部分(PREINT)、预分频值小数部分(PREFRAC)。


1.2 实时时钟的基本操作
    首先,设置时钟控制寄存器(CCR)可以选择RTC的计数时钟,可以由外部振荡器32.768 kHz提供或内部Fpclk分频得到。当使用Fpclk作为时钟源时,它的基准时钟分频器允许调节任何频率高于65.536 kHz的外设时钟源产生一个32.768 kHz的基准时钟,实现准确计时操作。
    其次,如果CCR选择内部时钟源,则设置RTC基准时钟分频器(PREINT、PREFRAC),如果选择外部32.768kHz就不必设置预分频寄存器的值,预分频寄存器值的计数如下:
   
    接着初始化实时时钟(RTC)的各个时钟值,如YEAR、MONTH、DOM等,报警中断设置,如CIIR、AMR等,然后启动RTC,即CCR的CLKEN位置位,读取完整的时间寄存器值。在此过程中时钟节拍计数器(CTC)是一个15位计数器,每秒计数32 768个时钟,当有CTC秒进位时,完整时间CTIME0~CTIME2、RTC时间寄存器(如SEC、MIN)将会更新。实时时钟中断有两种:一种增量中断,由CIIR控制;另一种为报警中断。本设计使用的是增量中断。
    最后将串口初始化,设置串口的波特率、数据位、停止位、校验位等,将串口与上位机连接,将串口采集到的时间寄存器变化的时间值发送到上位机上显示,得到对实时时钟的控制结果。
1.3 寄存器的功能介绍
    时钟控制寄存器(CCR)是一个5位寄存器,控制时钟电路的分频操作。计数器增量中断寄存器(CIIR):可以使计数器每次增加时产生一次中断,在中断位置寄存器的位0(ILR[0])写入1之前,该中断一直保持有效。完整时间寄存器0(CTIME0)和完整时间寄存器1(CTIME1):
CTIME0包括秒、分、小时、和星期,CTIME1包括日期、月和年。具体寄存器描述略——编者注。
    预分频整数寄存器(PREINT):预分频的整数部分。预分频整数部分计算如下:
   
    预分频小数寄存器(PREFRAC):预分频的小数部分。预分频小数部分计算如下:
   

2 系统硬件设计
2.1 系统的硬件结构
    该系统对ARM7微控制器LPC2131的实时时钟模块的各个寄存器控制,来达到对时钟的精确控制。该系统的硬件结构图,如图2所示。包括复位电路模块、JTAG下载模块、通信模块(RS-232)、ARM7微控制器模块及外部振荡电路模块。


2.2 系统的硬件原理图
    复位电路如图3所示,采用复位芯片SP708S,可以大大提高MCU的复位性能。通过确定的电压值(阈值)启动复位操作,同时排除瞬间干扰的影响,又防MCU在电源启动和关闭期间的误操作,保证数据安全。用阻容复位稳定性差,常常有按了复位键没反应,要按一段时间才能复位的经历,容易复位不成功。


    JTAG下载电路如图4所示,采用20引脚的JTAG口,使用下载工具J-LINK,由软件MDK将从PC机通过J-LINK,下载到LPC2131里。


    串口通信电路如图5所示,采用串口芯片MAX3232,将MAX3232与LPC2131连接起来,实现上位机与下位机数据通信。


    ARM7微控制器模块及外部振荡电路的系统时钟源晶振为11.059 2 MHz,实时时钟的晶振为32.768 kHz。电路图略——编者注。

3 系统软件设计
3.1 程序流程
    本系统采用了高级语言C编写LPC2131程序,本程序主要完成对实时时钟RTC的各个时间寄存器的设定、显示以及对串口0的初始化设定。然后通过CPU采集实时时钟的各个时间寄存器变化的数据,经串口连接到上位机,在上位机上显示出时间来。程序流程如图6所示。


3.2 控制程序
    根据程序流程,可将程序分为三大部分:第一部分,对串口的初始化及串口发送数据的函数初始化。第二部分,对实时时钟的初始化,来设置基准时钟、时、分、秒等各个寄存器,将采集到的数据通过终端显示出来。第三部分,主函数部分,将秒增量中断标志置位、清楚RTC中断,而后循环地将时间在串口调试助手上显示。




4 实验结果
    将以上程序在MDK中运行,下载到LPC2131中,将串口与PC机连接,设置好串口调试助手,波特率9 600bps,数据位8位,1个停止位,无校验位。得到时间结果。

结语
    本文介绍了基于ARM7TDMI-S核的芯片LPC2131和内部的实时时钟(RTC)的工作原理,设计了基于实时时钟LPC2131的串行通信的采样系统,将时间显示在上位机上。这种时钟控制系统在现代生产、生活中应用广泛。在实际应用中,只需根据本文的基本思想进行适当的移植,即可设计成专用的时钟控制的嵌入式装置,并嵌入到各种智能化应用系统中。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭