当前位置:首页 > 工业控制 > 工业控制
[导读]摘要:针对便携式电子设备及可穿戴计算机系统对柔性、可折叠、多功能输入设备的需求,采用导电织物结合触摸屏控制器开发一种织物键盘,对设备组成原理、传感器材料选取、键盘结构设计、控制程序编写等3个关键问题进行

摘要:针对便携式电子设备及可穿戴计算机系统对柔性、可折叠、多功能输入设备的需求,采用导电织物结合触摸屏控制器开发一种织物键盘,对设备组成原理、传感器材料选取、键盘结构设计、控制程序编写等3个关键问题进行探讨。测试了4种导电织物的面电阻值,根据标准差率最小原则,选取面电阻值为2 646 Ω,标准差为114 Ω的织物作为传感器材料;根据五线式触摸屏控制电路的功能要求设计了全织物的5层键盘结构,其中2层为导电织物层,实现按压点位置与电压信号的转换。采用Cypress公司的软件开发包,USB接口协议,在Microsoft VS20 05开发环境下设计了计算机采集程序。经测试,织物键盘定位值的线性拟合R2值为0.999 5,提供了一种完全基于织物的高精度、柔性键盘解决方案。
关键词:导电织物;柔性;输入设备;表面电阻;触摸屏

0 引言
    随着电子技术的快速发展,电子设备逐渐小型化、低功耗化、模块化,各种类型的便携设备如手机、MP3、PDA乃至超便携计算机不断涌现,并逐步融入大众的生活,成为人们获取、传输信息的主要手段。使用方捷、易于携带的输入设备成为提高信息输入效率、增强用户体验的关键,微型键盘、触摸屏、语音控制等技术的应用不断提高电子设备的人机交互性能。基于织物的输入设备由于采用织物作为主体,具有轻薄、柔软可折叠,便于与服装进行集成的优点而成为便携式输入设备的理想选择。
    基于导电织物的柔性键盘一般分为开关原理的扫描式键盘及触摸屏原理的电阻式键盘2种。开关键盘采用导体或是银浆作为导电通路嵌入织物面料中,通过轮询扫描按压点的通断信息,判断按键位置,其结构和控制电路比较简单,功能也较为单一。同时,由于导体材料与织物面料力学特性存在差异,在折叠及受力情况下容易发生导体断裂、移位等现象,导致按键功能失效。采用电阻式触摸屏原理的织物输入设备用具有均匀表面电阻的导电织物代替通常触摸屏的透明氧化金属导电层作为传感器,对导电织物表面电阻值的一致性要求较高,必须选用表面电阻均匀的织物作为基材。同时,设备基于电阻分压原理设计,电压测量控制与位置计算也相对复杂,一般采用专用的芯片实现电路功能。与开关式键盘不同,触摸键盘属于连续型电压模拟量测量,原理上可以细分到控制芯片DA分辨率相同数量的按键数目,还可通过软件配合完成键盘、鼠标等多种自定义功能,具有更为广泛的用途。
    信息化服装及可穿戴计算机是将信息处理设备穿戴在于人体身上,与人所穿的衣物相结合实现人与计算机之间自然、方便和有效的信息交互,因此需要将键盘、鼠标进行柔性化、织物化后与服装进行有效集成。针对信息化服装及可穿戴计算机要求输入方式灵活,特别是对鼠标控制功能的需求,传统扫描式按键已无法满足需求。设计基于导电织物的柔性输入键盘,对输入设备原理、导电织物面电阻分布规律、织物键盘结构、接口电路及程序设计等关键问题进行了探讨。

1 柔性输入设备的原理
    基于电子织物的柔性输入设备组成如图1所示,主要由织物传感器、触屏控制电路、USB接口电路组成。其中,织物传感器采用具有一定表面电阻的导电织物材料作为核心,结合多层结构设计,将按压位置信号线性转换为对应电压信号;触屏控制电路包括标准电压生成、模/数转换、逻辑控制3大功能,基于电阻分压原理在导电织物表面形成标准的电压梯度,测量按压点的电压后进行模/数转换,生成数字信号向外输出;接口电路采用USB接口芯片,写入触屏控制电路参数,实时获取传感器输出数据,向主控设备传输;上位计算机接收数据后完成电压与按键位置的线性转换。


    为简化系统设计,提高设备运行的可靠性,选用高度集成的5线制触摸屏控制芯片ADS7845实现标准电压的生成、数据采集处理及逻辑控制。芯片采用5 VUSB电源供电,生成的5 V参考电压输出管脚UR,LR,UL,LL与具有一定面电阻的织物材料的4角分别相连,织物表面形成横向及纵向的梯度电压。在按压状态下,位置点P处横向及纵向的电压通过wiper引脚分时刻进入芯片内部12位ADC,将模拟电压量化为数字信号。芯片接口电路将转换后的数据通过USB接口向计算机输出。计算机程序获取按压点电压值,与5 V参考比较,确定按压点在传感器中的相对坐标,从而确定其所在的具体位置及对应的控制符号,进而实现相应的控制操作。

2 导电织物电学性能的分析
    作为织物键盘的核心部件,导电织物表面电阻值的均匀性与一致性是织物键盘实现的基础。导电织物一般采用镀银工艺或是高分子导电布料形成具有一定表面电阻的织物面料,用于抗静电及抑制电磁辐射等场合。由于纺织及织造工艺的限制,其织物不同区域表面电阻的差异非常大,均匀性较差,必须在使用前进行电学性能分析。
    为保证键盘定位精度及线性度,对导电织物表面电阻值进行测试。使用4探针科技公司的RTS-2型薄层电阻测试仪对图2所示a,b,c,d四种织物样品进行面电阻测试。尺寸分别为10 cm x 8 cm,9 cm×6 cm,17 cm×10 cm,25 cm×7 cm。测试时,将织物区域按3×3比例划分为9个区域,测量每个区域中心点的面电阻值3次取平均值作为每个区域面电阻值,所有区域面电阻值平均值作为织物的面电阻值,如表1所示。


    4种织物面电阻值如表1,由于导电织物的表面电阻均值从347 Ω到3 872 Ω差异较大,无法从方差比较出不同试样表面电阻值的一致性,因此采用标准差率来定义样品表面电阻的一致性差异。从表1中试样4的表面电阻标准差率为0.40%,因此其均匀一致性较好。因此,选取试样4织物作为操控器的传感器材料。

3 织物键盘结构设计与功能实现
    织物键盘通过导电织物层、功能定义层、隔离层、保护层的设计,实现按压位置到电压信号的变换,提供按键区域的定义划分及对键盘进行保护。计算机应用程序获取传感器采集数据,进行电压数据到位置数据的转换,并根据按键区域的功能定义实现操作控制功能。
3.1 织物键盘结构设计
    织物键盘主体结构如图3共分为5层。根据每层的功能设计选用不同特性的织物组成织物键盘。


    键盘顶层为符号定义层,用于划分触摸区域,采用印染或针织等方式定义键盘功能如字符、功能键、计算机控制等,同时为键盘提供保护。第2层为上导电织物层,作为检测电极在按压状态下与下导电织物层接通,获得按压位置的横向和纵向电压值。上导电织物层通过外接导线与触屏控制器的wiper管脚相连,实现检测信号输入。第3层为隔离层,用于分隔上、下导电织物层,系统采用网状多孔轻薄多孔织物组成,两层在不受外力时不接触。按压操控状态下,上、下导电织物层受外力在按压点通过隔离层的细孑L接通两织物层,将电压信号输出。第4层为下导电织物层,该层织物的4个顶角通过金属线对应连接触屏控制器的UR,LR,UL,LL四个管脚,控制电路提供标准电压,在织物层表面形成电压梯度,通过位置电压表示其在织物层上的相对位置。最底层为保护层,为导电织物层提供绝缘保护并加固键盘。
    隔离层织物的选型决定键盘的实用性能。由于导电织物层比较柔软,过薄的厚度和过大的网孔很容易接通上、下导电层,在未按键时出现错误按键指示。如果隔离层过后,织物网孔过小,则要求按压力度比较大,影响操控的手感。实际设计中选用厚度0.3 mm孔径为2.0 mm的多孔织物,实现较好的按压手感和接通效果。
3.2 软件功能设计
    触屏控制电路采用TopTouch公司的控制模块M5UG,板载触屏控制芯片AD7845、USB接口控制芯片CY7C63723C及配置寄存器93LC46,实现触屏的逻辑控制、标准比较电压的生成、按压点电压数据的采集、转换及传输。
    计算机端程序采用VS2005开发,键盘驱动采用Cypress公司的CYUSB开发包设计,实现计算机对键盘资源的访问,进行查询、设置、读取等操作。
    软件运行界面如图4所示,首先查找USB设备,通过设备描述字符获取织物键盘设备,建立设备连接后就可以读取设备操控产生的数据。其中,STATUS表明本次读取数据是否正确,在数据传输正常时,AD0,AD1是按压点横向、纵向电压AD转换值,通过坐标转换公式即可得到二维坐标值。
   
    式中:Px,Py是按压点横向及纵向位置。Vs是全幅面电压差的A/D转换值,系统中为12位A/D转换满刻度值2 048;Vx,Vy是按压点横向、纵向测得的电压转换值,如图4中AD0,AD1所取值。Lx,Ly是织物长度及宽度,可取1则实现两者的归一化处理,适应不同的键盘尺寸。


3.3 线性度测试实验
    在织物键盘对角线上以0.5 cm的距离进行按压位置线性度测试。两组对角线数据每组60个点,数据分布如图5(a),按压点分布均匀对称。图5(b)为一对角线的线性拟合结果图,采用直线方程进行拟合,R2值达0.999 5,说明织物键盘的线性度非常好,完全满足实际应用的需求。



4 结语
    采用表面电阻值分布均匀的导电织物作为触摸操控设备的传感器,通过结构设计可实现键盘鼠标等输入设备,满足人们对轻便、柔性输入设备的需求。现有导电织物面料表面电阻值范围从几十欧到几千欧,差异较大,需选取标准差率小于0.5%的织物以获得较好的一致性。采用触摸屏技术与导电织物相结合可实现键盘、鼠标等功能,相较基于开关信号输入的扫描式键盘,具有更紧凑的结构,更丰富的功能,可更好满足实用需求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭