当前位置:首页 > 工业控制 > 工业控制
[导读]按照现代的制造工艺来说,根据不同的掺杂方式在同一个硅片上制造出三个掺杂区域,并形成两个PN结,由此就构成了一个晶体管。 晶体管最大的优点就是能够放大信号,它是放大电路的核心元件,能够控制能量的转换,将输入

按照现代的制造工艺来说,根据不同的掺杂方式在同一个硅片上制造出三个掺杂区域,并形成两个PN结,由此就构成了一个晶体管。

 

晶体管最大的优点就是能够放大信号,它是放大电路的核心元件,能够控制能量的转换,将输入的任何微小变化量不失真地进行放大输出。

以下是我们在电路设计中使用三极管时需要注意的几个问题,还是老样子——“看图说话”:

(1)需注意旁路电容对电压增益的影响:

这个电路在国内各种模拟电路教材书上是司空见惯的了,也算比较经典的了。由于这个旁路电容的存在,在不同频率环境中会有不同的情况发生:

a、当输入信号频率足够高时,XC将接近于零,即射极对地短路,此时共射的电压增益为:        

b、当输入信号频率比较低时,XC将远大于零,即相当于开路,此时共射的电压增益为:        

由此可以看出,在使用三极管设计电路时需要掂量旁路电容对电压增益带来的影响。

(2)需注意三极管内部的结电容的影响:

由于半导体制造工艺的原因,三极管内部不可避免地会有一定容值的结电容存在,当输入信号频率达到一定程度时,它们会使得三极管的放大作用“大打折扣”,更糟糕的是,它还会因此引起额外的相位差。

a、

由于Cbe的存在,输入信号源的内阻RS和XCbe形成了一个鲜为人知的分压器,也可以看成是一个LPF,当输入信号的频率过高时,三极管基极的电位就会有所下降,此时电压增益就随之减小。

由于Cbc的存在,当输入信号的频率过高时,Vout的一部分会经过Cbc反馈到基极,又因为此反馈信号和输入信号有180°的相位差,所以,这样也会降低基极的电位,电压增益也由此下降。

(3)需明确把握三极管的截止频率:

这个电路图是一个等效过后的图,其中CL是集电极到发射极、集电极到基极之间的结电容以及负载电容的等效电容。当输入信号的频率达到

            时,三极管的增益开始迅速下降。为了很好地解决这个问题,就得花心思把CL尽量减小,由此,fH就可以更高一些。首先我们可以在设计电路时特意选择那种极间电容值较小的三极管,也就是通常所说的RF晶体管;我们也可以减小RL的取值,但是这样的话得付出代价:电压增益将下降。

(4)三极管作为开关时需注意它的可靠性:

如同二极管那样,三极管的发射结也会有0.7V左右的开启电压,在三极管用作开关时,输入信号可能在低电平时(0.7V<Vin<2.4V)也会导致三极管导通,使得三极管的集电极输出为低电平,这样的情况在电路设计中是应该秒杀的。下图是解决这个问题的一个办法:

   
 

在这里,由于在基极人为接入了一个负电源VEE,这样即使输入信号的低电平稍稍大于零,也能够使得三极管的基极为负电位,从而使得三极管可靠地截止,集电极就将输出为我们所希望的高电平。

(5)需要接受一个事实:三极管的开关速度一般不尽人意。

由前所述得知,器件内部结电容的存在极大地限制了三极管的开关速度,但是我们还是可以想出一些办法有效地改善一下它的不足的,下图就提供了一个切实可行的方法:

从图中可以看出,当输入信号的上升时间很小(信号频率很高)时,即dV/dt很大,则ZC很小,结果Ib非常大,以致三极管可以迅速地饱和或者截止,这自然也就提高了三极管的开关速度。

(6)应该明白射极跟随器的原理:


 

        射极跟随器的一个最大好处就是它的输入阻抗很高,因而带负载能力也就加强了。但是在运用过程中还是得明白它的原理才行,否则可能会造成意外的“问题源”。下面介绍一下它的原理,对于这个电路而言,有如下方程式:

 

 

由此可以看出,连接在发射极的负载阻抗在基极看起来就像一个非常大的阻抗值,负载也就容易被信号源所驱动了。

这篇博文中主要是以共射电路为例来说明问题,以上所说的几个问题只能当是&ldquo;管中窥豹&rdquo;了,因为三极管的使用注意事项实在太多,并非一篇博文能够涵盖得了的,况且要好好把握三极管这个器件也并非易事,但是如果我们在实践中有意识地不断去体会、不断去总结的话,三极管也将会为我们所熟用的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭