当前位置:首页 > 工业控制 > 工业控制
[导读]摘要:在对低噪声CMOS图像传感器的研究中,除需关注其噪声外,目前数字化也是它的一个重要的研究和设计方向,设计了一种可用于低噪声CMOS图像传感器的12 bit,10 Msps的流水线型ADC,并基于0.5μm标准CMOS工艺进行

摘要:在对低噪声CMOS图像传感器的研究中,除需关注其噪声外,目前数字化也是它的一个重要的研究和设计方向,设计了一种可用于低噪声CMOS图像传感器的12 bit,10 Msps的流水线型ADC,并基于0.5μm标准CMOS工艺进行了流片。最后,通过在PCB测试版上用本文设计的ADC实现了模拟输出的低噪声CMOS图像传感器的模数转换,并基于自主开发的成像测试系统进行了成像验证,结果表明,成像画面清晰,该ADC可作为低噪声CMOS图像传感器的芯片级模数转换器应用。
关键词:流水线ADC;低噪声CMOS图像传感器;成像;Labview

    CMOS图像传感器(CMOS image sensor,CIS)在近二十年来取得了飞速的发展,得益于有源像素传感器(Active PixelSensor)的出现、相关双采样技术(Correlated Double Sampling)的发明以及工艺的进步等,用于低噪声应用领域的CMOS图像传感器也取得了长足的发展。由于CMOS传感器具有先天的低成本、易于集成等优点,CMOS传感器在低噪声应用领域也已引起了越来越多的关注。目前,在低噪声CMOS图像传感器的研究领域,除研究其噪声外,数字化也是它的一个重要的研究方向。
    文中介绍了一种适用于低噪声CMOS图像传感器芯片级模数转换的流水线型ADC,根据低噪声CMOS图像传感器的系统要求,文中设计的ADC的分辨率为12 bit,速度为10 Msps,采用了每级1.5 bit、共11级的流水线型结构。在该ADC完成设计仿真后,基于0.5μm标准CMOS工艺进行了流片。最后在PCB板级电路上用该ADC对一个自主设计的模拟输出的CMOS图像传感器进行了模数转换,并基于自主设计的成像测试系统完成了CMOS图像传感器的成像。

1 ADC设计指标及框架
    根据自主设计的低噪声CMOS图像传感器的系统要求,可以确定流水线ADC的设计指标。表1给出了该设计的具体设计指标。


    由于该ADC设计目标为应用在自主设计的低噪声CMOS图像传感器的芯片级,因此其速度和精度都应尽可能的高,以达到芯片系统低噪声和速度的要求。而由于其工作在芯片级,其功耗和面积的要求则可以相对宽松一些。因此本设计采用了11级,1.5 bit每级的结构,虽然这种结构在功耗上会有所增加,但是可以降低比较器的比较精度带来的影响,同时也降低了对第一级采样保持电路运放的要求。本文设计的ADC的结构框图如图1所示,在该ADC11级结构中的前10级电路中,每级电路包括子模数转换器(ADC)、子数模转换器(DAC)、求和电路、余量放大器以及采样保持电路,其中由于子DAC、采样保持电路、求和电路以及余量放大电路一般都由一个开关电容电路实现,因此该电路模块常被统称为乘法型数模转换器(Multiplying digital to analog converter,MDAC),第11级电路为一个2 bit的flash ADC。在两组互不相交时钟CLK1和CLK2的控制下,每级电路都产生了数字输出,这些输出在经过数字位对齐和数字校准后得到最终的数字输出。



2 ADC各模块设计
2.1 MDAC设计
    MDAC电路是流水线ADC设计中非常重要的部分,它在ADC中实现的功能包括采样保持、数模转换、减法和余量放大等,一般采用开关电容技术实现,由模拟开关、电容和跨导运算放大器(OTA)构成,其电路图如图2所示。其工作原理是:用MDAC的采样保持对前级余量电压进行采样;将其采样电压与本级子DAC的输出电压进行减法运算;将减法运算得到的余量电压通过余量放大器进行放大。


    在流水线ADC结构中,第一级的MDAC的要求最高,随着级数的增加,要求不断降低。对于一个12位、10 Msps采样率流水线ADC,以第一级MDAC为例,该电路需满足的总体指标为:精度12 bit,采样率10 Msps。而在MDAC设计中,最关键的是余量放大器设计,本文以第一级余量放大器的设计为例来说明整个设计,其中采用的余量放大器的结构如图3所示。余量放大器工作在闭环状态,要求其有限直流增益造成的误差小于1/2LSB,即有:
    
    式中A0为开环增益,N为ADC分辨率,β为反馈系数。


    另外,由于余量放大器有限的带宽,因此对输入电压响应需要经过一定的时间才能趋于稳定。在采样频率为f的ADC中,要求信号在二分之一的时钟周期内达到所需的精度(即误差小于1/2LSB),即有:
    
    式中GBW为单位增益带宽,N为ADC分辨率,β为反馈系数,f为采样频率。
    对于本文的ADC设计有:N=12,β=1/2,f=10 MHz,因此由公式(1)和公式(2)可得,用于本文第一级MDAC的余量放大器应满足:开环增益需大于84 dB,单位增益带宽需大于58 MHz。综合考虑到输入信号摆幅、流片工艺和功耗等要求,本文的余量放大器采用了折叠共源共栅的运放结构,仿真结果表示,该结构可满足设计要求。
2.2 比较器设计
    流水线ADC由于采用了校正电路,对比较器失调电压的要求放宽了。对于1.5 bit每级的电路,设参考电压为1 V,则它的失调电压放宽为125 mV。本ADC中从第1级到第10级电路都采用了动态比较器,因为其失调电压小于可校正的最大失调电压,同时它具有较快的速度和较低的功耗。该电路的原理图如图4所示,它包括一个由rst信号控制的快速复位电路、信号输入的预防大电路、锁存比较器以及输出反相器组成。


2.3 数字位时间对齐及数字校准电路设计
    由于流水线ADC每级电路产生数字代码的时间不同,因此,在进行数字校正之前,必须先对其进行延迟,所以在数字校正电路之前必须要有数字延迟电路。完整的输出数字时间对齐及数字校正电路如图5所示,其中图的左边为数字位时间对齐电路,图的右边为数字校准电路。


2.4 时钟控制电路设计
    流水线ADC对于时序要求比较高,为了确保流水线ADC正常工作,要求前后两级不同时工作在采样状态和保持状态,至少需要一对两相不交叠时钟。文中设计的时钟信号电路如图6所示。相比一般的采用器件延时来设计时钟控制电路,本文采用了在电路引入电容的方式来确定时钟延时,尽管这样做会在版图上多占用了一些面积,但是其好处是设计的两相不交叠时钟非常稳定,时钟可以根据电容值选取的大小而更为合理的错开。



3 芯片版图
    该芯片使用0.5μm标准CMOS工艺进行流片,版图的设计综合考虑了混合信号电路布局、匹配设计和抗干扰设计等。布局采用数模分离,数字电路加保护环;匹配设计采用了共心对称设计、比例单元设计和添加哑元元件等技术。芯片版图如图7所示,带PAD的整体芯片面积为3.55 mm@2.9 mm,其中上部分为数字位对齐和数字校准电路,中部为各级流水线,右侧为时钟产生电路,下部为信号输入和其他电路。

4 成像系统及其成像结果
4.1 成像系统硬件组成
    低噪声、高帧频的CMOS图像传感器成像,除了对PCB测试板的设计要求较高外,也对测试系统的构成也提出了较高的要求。本成像系统的电学硬件系统框图如图8所示。该电学硬件系统的基本工作原理是:


    1)在PCB板上用基于CPLD设计的时钟波形来控制板上的CMOS图像传感器芯片和ADC芯片协同工作,并在此过程中生成帧同步信号和ADC时钟信号交予数字采集卡作为采集卡的外触发和外时钟信号。
    2)在ADC芯片将CMOS图像传感器产生的模拟信号进行模数转换后,其数字信号经缓冲芯片缓冲输出至数字采集卡。
    3)数字采集卡在帧同步信号控制下进行重复触发采样,在采集卡收集到一定数据后将采集到的数据传送到主机中,然后用成像软件进行分析,给出动态的成像图片。
4.2 成像系统软件设计
    本测试系统软件采用Labview编程,Labview是一种图形化的编程语言的开发环境,广泛地被工业界、学术界和研究实验室所接受,视为一个标准的数据采集和仪器控制软件。
    本系统中利用Labview的虚拟仪器(virtual instrument)实现对数据采集卡的数据采样控制、对采集到的数据进行信号处理以及动态成像,图9为成像软件的界面图,其工作模式和原理是:


    1)在控制数字采集卡的程序中,将始终和触发设置为外时钟采样以及外触发重复触发采样模式,以实现成像信号帧同步和保证采集卡采样与ADC输出的同步。
    2)在将采集到的数据转化为U16数字格式数组后,对这些信号进行灰度值处理,程序设计了两种灰度调节模式:固定的灰度转换和灰度自动调节,此外程序还设计了可选的反色、图像翻转、图像放大等功能。
    3)在数据进行信号处理后,完成对采集数据的二维灰度值成像,这些信号处理和成像程序都置于while循环中,因此可根据延时设置成像刷新的帧频,实现动态成像。
4.3 成像结果
    用本文设计的ADC对模拟输出的CMOS图像传感器进行模数转换后,基于自主设计的成像系统,进行了实时成像实验,成像结果如图10所示,可以看出,画面清晰,层次感分明。



5 结束语
    文中设计了一种可应用于低噪声CMOS图像传感器芯片级模数转换的12bit、10Msps流水线ADC,并基于0.5μm标准CMOS工艺进行了流片。最后在PCB板级电路上用该流水线型ADC完成了CMOS图像传感器的模数转换,并基于Labview和数字采集卡系统实现了CMOS图像传感器的成
像,成像结果表明,该ADC可满足低噪声CMOS图像传感器芯片级模数转换器的要求,下一步可将CMOS图像传感器和该ADC合并设计在一个芯片上进行流片。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭