当前位置:首页 > 工业控制 > 工业控制
[导读]摘要:以螺旋桨的电液比例周控制系统为研究对象,针对被控对象的非时变性和时变性的特点,采用了一种基于自适应模糊PID控制策略;利用Madab中Fuzzy和Simulink有机结合,方便的实现了模糊自整定PID参数控制系统的仿真

摘要:以螺旋桨的电液比例周控制系统为研究对象,针对被控对象的非时变性和时变性的特点,采用了一种基于自适应模糊PID控制策略;利用Madab中Fuzzy和Simulink有机结合,方便的实现了模糊自整定PID参数控制系统的仿真;得到了自适应PID模糊控制比普通PID控制在被控对象上具有实时性好、稳定性高的结论。
关键词:螺旋桨;模糊PID控制;电液比例阀;Matlab仿真

0 引言
    电液比例阀系统广泛应用于精度要求高的机械加工等行业,其传统的控制方式大多采用常规的PID控制技术,它具有简单、可靠、参数整定方便等优点。但由于电液比例阀系统受温度、负载等参数变化的影响较大,因而在控制性能要求高的场合往往不能满足。其主要原因是电液比例系统在流体动力学及电磁转换方面具有特殊性,是复杂的非线性高阶系统,系统设计时要建立准确的数学模型比较困难。
    因此,如何使PID控制更好的应用于非线性系统的控制,并具有较好的智能性,是个值得研究的问题。基于以上原因,如果将基于规则的模糊控制用于PID控制器的设计,一方面可使PID控制器具有模糊控制的功能,又可使模糊控制具有确定的控制结构,从而使所设计的控制器具有两种控制的优点,同时又弥补对方的不足,达到既提高系统的动态特性,又保证系统稳态精度的要求,从而确保良好的设备控制效果。

1 电液比例阀的模糊PID控制器设计
1.1 模糊控制器的设计
   
螺旋桨电液比例阀控制系统结构如图1所示。


    自适应模糊PID控制器以误差E和误差变化率Ec作为输入,可以满足不同时刻偏差E和偏差变化率Ec对参数自调整的要求。利用模糊控制规则对参数进行修改便构成了自适应模糊PID系统。如图2所示。


    在本系统中模糊控制器将是设计的核心,因为它的好坏将直接影响到KI,KD和KP的选取,从而影响到系统的控制精度。
1.2 各变量隶属函数的确定
   
由文献可知,根据PID参数自整定原则,用于PID参数控制的模糊控制器采用二输入三输出的模糊控制器。以E和Ec为输入语言变量,以KI,KD和KP为输出语言变量。输入语言变量的语言值均取为“负大”(NB)、“负中”(NM)、“负小”(NS)、“零”(ZO)、“正小”(PS)、“正中”(PM)、“正大”(PB)七种。输出语言变量的语言值均取为“零”(ZO)、“正小”(PS)、“正中”(PM)、“正大”(PB)四种。将偏差E和偏差变化率Ec量化到(-3,3)的区域,输出量化到(0,3)的区域内,隶属函数曲线如图3,图4所示。


1.3 模糊规则
   
由于控制品质的好坏主要取决于控制参数的选择是否合理,通常不同的偏差E和偏差变化率Ec对PID控制器参数KP,KI,KD的整定要求不同。根据已有的控制系统设计经验,以及参数KI,KP和KD对系统的输出特性的影响关系,归纳出在一般情况下,不同的和时,被控过程对参数KI,KP和KD的自调整规则如下:
    (1)当|E|较大时,为了加快系统的响应速度,应该取较大的KP。但为了避免由于开始时的偏差|E|的瞬时变大可能出现的微分过饱和而使控制作用超出许可的范围,应取较小的KD,同时为了防止系统响应出现较大的超调产生积分饱和应对积分作用加以限制通常取KI=0。
    (2)当偏差|E|处于中等大小时,为使系统响应具有较小的超调,KP应取得小些。这时,KD的取值对系统影响较大,取值要大小适中以保证系统的响应速度。
    (3)当偏差|E|较小即接近于设定值时,为使系统具有良好的稳态特性,应增加KP和KI的取值。同时为避免在系统的设定值附近出现振荡,KD值则根据|Ec|来确定:当|Ec|较小时,KD可取值大些;|Ec|较大时,KD应取小些。
    由此,可以建立KP,KI,KD的模糊控制规则,见表1~表3。


1.4 模糊判决
   
把模糊量转换为精确量的过程称为清晰化,又称为去模糊化或模糊判决。为了获得准确的控制量,就要求模糊方法能够很好的输出隶属函数的计算结果。输出控制量U是一个模糊子集,它是反映控制语言取值的一种组合。应用模糊判决,即按加权平均法、隶属度最大法或中位方法等原则,求出相应的控制量U。本系统采用工业控制中广泛使用的加权平均法。该方法针对论域中的每个元素(i=1,2,…,n),以它作为待判决输出模糊集合的隶属度μ(i)的加权系数,取输出变量电压加权平均值u为:
   
    平均值u就是应用加权平均法为模糊集合求得的判决结果。最后用输出量化因子乘以u来满足控制要求,从而得到控制量的实际值。

2 系统仿真分析
2.1 仿真控制对象
   
仿真控制模型的搭建,是验证系统控制算法准确性的基础。由于该模糊PID控制器用于液压系统中,因此由系统框图1可知,需求出各环节的传递函数。
    (1)比例方向阀:根据测试结果,工程上将比例方向阀视为一个二阶环节。其传递函数为
   
    式中:Kq为比例方向阀的流量增益(单位:m3/(s·A));ωv为比例方向阀的相频宽(单位:rad/s);δv为比例方向阀的阻尼比。
    (2)液压缸-负载环节,在工程上视为一个积分与二阶环节的组合,即其传递函数为:
   
    式中:Ah为液压缸的有效作用面积(单位:m2);δh为液压缸-负载质量系统的阻尼比;ωh为液压缸-负载质量系统的固有频率(单位:rad/s)。
    由此,可以分析出闭环控制系统的开环传递函数为:
   
    式中:Ka为比例放大器的增益(单位:A/V),可视为比例环节;Kc为闭环系统的开环增益。
2.2 系统控制模型仿真
   
搭建好模型之后,利用Matlab/Simulink中的模糊控制工具箱建立模糊PID控制器与常规PID控制器,并分别搭建仿真模型进行仿真。根据控制要求以及参数整定值,得到模糊控制及常规控制的响应曲线,如图5所示。



3 结论
   
以上仿真结果表明:控制器参数的变化对系统的控制性能有很大影响,要合理选取参数,获得最佳PID控制特性。采用模糊控制算法,系统响应速度快,稳态性能好,具有较强的鲁棒性,这是常规PID控制难以实现的,对于螺旋桨上的液压控制系统有着较强的实际应用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭