当前位置:首页 > EDA > 电子设计自动化
[导读]介绍了一种基于复杂可编程逻辑器件(CPLD)的120MHz高速A/D采集卡的设计方法。

摘要:介绍了一种基于复杂可编程逻辑器件(CPLD)的120MHz高速A/D采集卡的设计方法。给出了这种采集卡的硬件原理电路和主要的软件设计思路。采用该设计方法设计的数据采集卡具有包括负延迟触发等多种触发方式,具有体积小,工作可靠,控制简单等特点。
关键词:高速A/D;CPLD;负延迟触发;EPM7128;AD9054


  高速A/D采集技术已在许多领域得到愈来愈广泛的应用,本文将详细论述采用CPLD技术来实现120MHz高速A/D采集卡的设计方法,该采集卡具有包括负延迟触发在内的多种触发方式,采用CPLD复杂可编程逻辑器件(又称FPGA)EPM7128SQC100-7和AD公司的高速模数转换器(A/D)AD9054BST-135来实现。

芯片介绍

1.1 EPM7128SQC100-7简介
  EPM7128SQC100-7内含128个宏单元(或2500个可用门),其引脚到引脚的最短传输延时为7ns,采用单+5V电源供电,可通过 JTAG接口实现在线编程,并带有可供84个用户使用的I/O脚(其中4个为专用输入脚)。该器件采用PQFP-100封装。其中TDI、TDO、 TMS、TCLK脚为编程脚;GCLK、GOE、GCLEAR、REDIN脚为专用输入脚;VCCINT、VCCIO脚接+5V电源;GND脚接地; I/O为用户可编程输入输出脚。在I/O脚作输出使用时,可由用户设定为0,1和Z三种状态。

1.2 AD9054BST-135简介  

  AD9054BST-135是一种低价位135MSPS的8位A/D转换器,其模拟输入电压峰峰值为1V,且内置2.5V参考电压,采用+5V单电源供电,并可与TTL电平接口,具有单8位或双8位A/D转换结果输出模式,采用TQFP-44脚封装形式,其内部结构如图1所示,各管脚的定义如下:
    AIN:模拟电压输入正端;
   
:模拟电压输入负端;
    E
NCODE:时钟输入正端;
  :时钟输入负端,通常应通过电容耦合接地;
  :输出数据模式设置引脚。该脚为1时,采用单8位A/D转换结果输出模式。该脚为0时,采用双8位A/D转换结果输出模式;
   
DS:数据同步控制引脚,正脉冲输入;
    AD7~DA0:A/D转换输出;
   
D B7~DB0:A/D转换输出;
   
V REFOUT:+2.5V参考电压输出;
   
V REFIN:参考电压输入;
   
DVD:+5V电源输入端;
   GND:电源地。

     使用时,如将接地,则AD9054工作于双8路数据输出模式。上电后,DA7~DA0及DB7~DB0均以二分之一的ENCODE频率(即120MHz/2)输出A/D 转换结果,因此从DA7~DA0及DB7~DB0读取的A/D转换结果,无法知晓DA口与DB口的数据所对应的采样点在时序上的先后。这样,需要加一个数据同步脉冲DS信号,并让DS正脉冲的后沿后的4个时钟周期上的DA口与DB口同步有效,即在DS后沿的第2N+1与2N+3个ENCODE上升沿期间输出第K点采样值的转换结果;在DS后沿后第2N+2与2N+4个ENCODE上升沿期间输出第K+1点采样值的转换结果(注:N≥1,K≥0,K=0对应的采样值为DS下降沿后ENCODE第一次上升沿时刻所对应的采样输入值)。因此,在施加DS信号后就可以得知任一时刻A口数据与B口数据所对应的采样点在时间上的先后顺序,以便读取有用的A/D转换数据。

2  系统设计原理

  图2是基于CPLD的高速 A/D采集卡的系统设计原理框图。图中,89C51送往EPM7128S的控制信号包括一个A/D启动信号SAD、一个读SRAM信号RRD和一个地址加一控制脉冲ACLK。而EPM7128S送往AD9054的信号为一个DS同步信号,送往89C51的信号为转换结束信号(接INT0)和超前触发地址串行输出信号SADR。

    EPM7128S送往61128-15SRAM的信号包括读信号RD、写信号WE、数据信号DINA0~7和DINB0~7以及地址信号ADR0~16。其中两片SRAM的地址信号共用。为了节省EPM7128S的I/O口线,可将61128-15的片选线接地。

    QA信号为外触发A/D转换控制信号。

  在本文所介绍的A/D数据采集卡中,负延迟触发存贮深度为2k字节。上电复位后, 89C51向EPM7128S发一个A/D启动信号时,EPM7128S也会发一个DS同步脉冲给AD9054,在四个时钟后,EPM7128S输出WE 信号有效,同时将AD9054输出的双8位数据信号以60MHz的频率经锁存处理后送往SRAM,每锁存AD9054数据一次(2字节)将地址 ADR0~13加1。当地址为3FF时(即1k),清地址计数器以使其为零。此后,地址计数器仍以60MHz的频率加1计数,而锁存器仍以60MHz的频率锁存双8位数据并写入SRAM。当地址为3FF时再一次清零,在外触发信号QA到来之前,CPLD就这样控制着整个电路以使其在2k字节存贮深度内作超前循环采集。当某一时刻的QA信号到来时,CPLD首先将此时的地址信号的前10位ADR0~9锁存,随后将地址计数器置为400H,而后地址计数器仍以 60MHz的频率加1计数,而锁存器也以60MHz的频率锁存双8位数据并写入SRAM。当地址计数器为1FFFFH(即128k)时,地址计数器停止计数,锁存器停止锁存数据并对外输出高阻态,CPLD向89C51送出转换结束信号ADEND,并置WE信号无效。

    当89C51收到ADEND中断信号后,就可以读取SRAM中的A/D数据以及CPLD中的超前地址ADR0~9。首先89C51将送出一个RRD信号给 EPM7128S,EPM7128S收到RRD信号后立即置RD信号有效,同时将地址计数器清零。此时,两片SRAM均输出地址为0的单元的数据,同时由 CPLD的SADR线输出负延迟触发地址ADR0~9中的ADR0位。89C51则可通过P0和P2口由DINA和DINB分别读取SRAM中的数据,并通过P1口由SADR读地址ADR0位。此后89C51便向EPM7128S发出一个地址加一脉冲ACLK,EPM7128S在收到这个ACLK脉冲后使 ADR0~13加1,同时CPLD由SADR线输出负延迟触发地址ADR0~9中的ADR1位。这样,89C51便可通过不断地发ACLK脉冲来使P0、 P2口的DINA和DINB分别读取SRAM中的数据,并通过P1口来由SADR读负延迟触发地址ADR0~9。

3  CPLD部分的设计

  由于EPM7128SQC100的内部逻辑电路是整个系统设计的关键,因此,了解EPM7128SQC100的内图2基于CPLD的高速A/D采集卡统框图基于复杂可编程逻辑器件(CPLD)的120MHz高速A/D采集卡的设计
部结构十分重要。图3是其内部结构原理框图。


     图3中有三个574锁存器,其作用是将AD9054输出的在时序上未对齐的DA、DB两组数据变为时序上对齐的两组数据DINA、DINB,图4是其对齐操作时序图。

    将120MHz信号二分频后所得到的60MHz信号可作为整个逻辑电路的工作频率。工作时,同步控制电路首先将外输入信号与内部60MHz信号同步,然后送往各单元电路。地址计数器的工作情况有两种:一是进行A/D采集时以60MHz频率计数,二是89C51读数时以ACLK脉冲频率计数。RD、WE发生电路的作用是当89C51发SAD信号时,电路输出WE信号有效,RD信号无效;而当89C51发RRD信号时,电路输出RD信号有效,WE信号无效。 DS信号发生电路的作用是在收到89C51的SAD信号时发送一个DS正脉冲。

    10位移位寄存器的作用是当外触发信号QA到达时将地址计数器中的ADR0~9锁存,当收到RRD信号后,系统每接收一个ACLK脉冲便将寄存器移位输出一次,顺序是低位在前。

4  单片机的软件设计

   
单片机的软件设计主要是负责把各种控制信号和数据送给CPLD,并把采集到的数据通过接口送到上位机或其它设备。本卡中的接口有串口和并口两种类型。对CPLD的操作的软件流程框图如图5所示。

  由于采用了负延迟触发,所以由SRAM所读取的256k字节并不是按时间的先后顺序存放的,因此必须进行重新排序整理。

注意事项

  在利用本文的设计方法进行120MHz A/D设计时应注意以下几点:
    (1)应选用高速器件。
  (2
)电路中的器件布局要合理,高频信号线应尽量的短。
  (3)进行时序分析时应充分考虑器件延时,必要时应考虑长线传输延时,这也是高频信号线应尽量短些的原因之一。
  (4)尽量采用同步设计。也就是说整个电路要尽最大可能按某一高频时钟同步工作。本电路的同步时钟为60MHz。
  
(5)电路内部要尽量滤去毛刺。特别是触发器、计数器的时钟信号、清零信号和置位信号,更应如此。

参考文献  

1.齐怀印,卢锦.高级逻辑器件与设计.北京:电子工业出版社,1996  
2.阎石.数字电子技术基础.北京:高等教育出版社.1996  
3.陈龙三.8051单片机C语言控制与应用.北京: 清华大学出版社,1999

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭