CAD/CAE集成技术浅析
扫描二维码
随时随地手机看文章
1前言
经过多年来 CADCAE集成技术的发展应用,当前,形成了若干集成途径,并在各领域得到了不同程度的应用。但仍距离预期CADCAE的“无缝”融合目标存在较大差距。特别是在航空航天领域,由于模型特征的复杂性、力学简化方式的多样性等原因,CADCAE集成的应用一直不理想。
从航空航天CAE分析的特点角度,导致CADCAE集成技术困难的原因可以归纳为:
(1)结构组成复杂
航天产品是一个复杂组合结构,含有大量的众多形式的受力构件(如蒙皮、桁条、腹板、接头、复合材料层板等)。单单从CAD、CAE领域本身快速精确地构建这些特征的模型就不是一件容易的工作。
(2)结构不连续性强
航天结构中又常常因为构造和工艺上的需要,或是为了维修方便和减重等原因,而不得不在钣金件上实施开口等处理,加受力或不受力口盖,以及迫使杆件断开等,形成结构不连续性。
(3)模型异构性强
在航天产品结构中,上述的板筋、梁板和杆系等组合结构,是非常典型的。区别与面向装配和制造的CAD建模,复杂板筋、梁板、杆系组合结构的FEA建模应该有它固有的力学方法和途径。这些都使得航天产品结构的有限元模型化过程变得繁琐复杂。而且,不同的分析问题对模型的要求差异较大,造成CAD、CAE共享数据非常困难。
(4)CAE知识程度要求高
不仅如此,工程分析人员为了能够尽可能地获取反映结构真实受力行为的分析模型,还必须对结构传力路线、材料特性、构件受载模式及结构不连续性对刚度产生的影响等因素有清晰的了解, 并进行妥善地处理。因此, 模型化工作又是一项知识密集型活动。
2 CADCAE集成技术途径分析
近两年来,随数字化技术的深入发展,CAD、CAE市场的产业格局发生了重大变化,出现了不少CAD公司与CAE公司的战略联盟和并购,如Dassault公司与MSC公司的联盟、Autodesk公司与Ansys公司的联盟等,双方通过开放直接数据接口,实现了CADCAE数据的“无缝”集成,使得CADCAE集成方式获得了转变性突破。本文认为今后CADCAE集成技术应重点从下述方向展开:
2.1 搭建
CADCAE中间“浮桥”集成途径早期,由于CAD、CAE分属于不同的软件公司,CADCAE的集成多以搭建CAD、CAE信息沟通中间“浮桥”的方式进行。其中,根据集成的目的不同,由两种技术实现手段。
2.1.1以共享
CAD几何信息为重点为了充分利用CAD系统设计完成的几何模型,减少CAE前处理阶段重新建立几何模型的重复劳动,如何有效利用CAD系统产生的几何模型是这种集成方式的研究重点。采用中间标准几何描述文件是重要的研究方向,产生了IGES、STL、step等中性格式。近年来,基于step文件格式的集成方式得到了深入研究和工程应用。STEP格式标准的目的是提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期中的产品数据,是CIMS系统和并行工程的技术核心。国内外开展了大量基于STEP格式的CADCAE集成技术研究和应用。
但由于软件更新、软件内部数据结构无法获得等原因,采用中间文件的方式,“信息孤岛”问题在工程研制中仍没有有效消除。
2.1.2以优化设计为集成重点
多学科设计优化(MDO)是侧重于模型集成,因此,对于MDO应用,CADCAE集成以提供参数化的模型为主。常采用的方式是有集成优化系统控制主参数,CAD和CAE系统提供参数化的模型,模型能够受主参数的驱动进行变化。由于CAE很难像CAD那样
给出基于特征的参数化模型,所以实际应用中一般均给出CAE分析的过程文件(如ANSYS的APDL文件),通过建立主参数与过程文件中变量的映射实现模型的驱动。下图给出了集成方式示意图。
优化设计的CADCAE集成方式
2.2 以CAD为中心的集成途径
随三维CAD技术的成熟和抢占PLM主导地位的市场需要,CAD软件的功能开始向CAE领域拓展延伸,当前主流的CAD系统都或多或少的拥有了CAE分析的能力。这为CADCAE的集成提供了一种技术方向,即将传统CAE的前处理工作“移交”给CAD系统,由其完成几何建模、载荷、约束、材料、网格划分等整个FEA的前处理,CAE系统只提供各种分析问题的求解器。由于采用一个数据库来存储CAD和CAE前处理信息,能
够实现CAD模型的变更自动驱动CAE模型的变化。当前,主流的CAD系统都提供了不同程度的 CAE分析能力,从工程应用情况看,主要定位给非强度分析人员如结构总体设计人员作为设计的辅助手段来使用。
在 CAD系统自身提供的 CAE前处理功能基础上,可以结合行业产品特点,开发定制化的 CADCAE集成环境。需要研究的主要内容包括:
(1) 考虑 CAE分析的 CAD设计建模规范。传统的 CAD设计建模规范是面向装配和制造的, CAD模型并不包含 CAE网格划分所需的所有几何信息(如实体梁可能并没有中面特征),因此,必须在 CAD建模规范中充分考虑 CAE所需的几何信息。
(2)求解器计算输入文件自动生成。当前有非常多的 CAE求解器可供用户选择,特别是进行多学科分析时,可能一套 CAD模型要面对多个不同的求解器。因此,如何支持更多的求解器以及多求解器输入文件自动生成技术是以 CAD为核心的集成方案要解决的关键问题。
2.3 以CAE为中心的集成途径
通过与 CAD厂商的联盟, CAE系统也在不断突破传统前处理的一系列弊端和不足,通过开发 CAD模型的双向驱动技术,实现了将 CAE几何建模转移到 CAD系统的目标。这种技术方案被称为新一代的 CAE前处理。如 Ansys公司的 workbench。AWE 集成的协同设计优化环境提供了参数化建模( ANSYS DesignModeler)与参数化分析( ANSYSDesign Space),多目标优化分析( DesignXplorer)。其底层数据是与 CAD 相同,因此可以直接与 Catia、UnigraphicsNX、Pro/Engineer等 CAD 系统共享数据。
其核心思想是通过开发 CAD模型本地驱动( native access)技术,实现 CAD模型的双向驱动, CAE系统的前处理模块负责对 CAD特征模型的识别和降维简化处理,如剔除倒角、浅槽等细节特征;将传统 CAE分析中的材料、载荷、边界约束、分析类型等与有限元分析密切相关的属性信息作为非几何特征附加给识别出来后的 CAD模型。然后根据附加的单元类型属性信息,将三维实体转换为面或壳、将三维杆状实体转换为一维梁等,为网格离散化提供“干净”的几何模型。接下来由 CAE系统的网格划分器完成网格划分工作,并自动生成求解器的计算输入文件,完成模型处理工作。
下图为安世亚太公司开发的基于特征的飞机有限元模型创建过程。
基于特征的飞机CADCAE集成设计分析
3 结论
本文针对当前航天产品研发 CAE的应用现状,对实现 CADCAE集成的各种技术途径进行了简要描述说明。作者认为,现阶段实现 CADCAE集成需要根据具体的型号应用目的,选择合适的集成方案,根据目前 CAD、CAE的发展趋势, CAD系统向 CAE领域的扩展将进一步加强,而 CAE的前处理能力将随技术的深入发展得到更大的提升,特别是与 CAD数据的无缝兼容的技术瓶颈有望得到有效解决, CADCAE模型的统一集成将给航天产品研发模式带来革新,“仿真驱动设计”的产品设计理念将越来约多的得到工程应用。