当前位置:首页 > 工业控制 > 电子设计自动化
[导读]摘要本文提出了一种基于FPGA的通用位同步器设计方案。方案中的同步器是采用改进后的Gardner算法结构,其中,内插滤波器采用系数实时计算的Farrow结构,定时误差检测采用独立于载波相位偏差的GA-TED算法,内部控制器和

摘要本文提出了一种基于FPGA的通用位同步器设计方案。方案中的同步器是采用改进后的Gardner算法结构,其中,内插滤波器采用系数实时计算的Farrow结构,定时误差检测采用独立于载波相位偏差的GA-TED算法,内部控制器和环路滤波器的参数可由外部控制器设置,因而可以适应较宽速率范围内的基带码元。

本文主要是先阐述传统Gardner算法的原理,然后给出改进后的设计和FPGA实现方法,最后对结果进行仿真和分析,证明该设计方案的正确、可行性。

0 引言

数字通信中,位同步性能直接影响接收机的好坏,是通信技术研究的重点和热点问题。通信系统中,接收端产生与发送基带信号速率相同,相位与最佳判决时刻一致的定时脉冲序列,该过程即称为位同步。常见的位同步方法包括滤波法和鉴相法。滤波法对接收波形进行变换,使之含有位同步信息,再通过窄带滤波器滤出,缺点是只适用于窄带信号。最为常用的位同步方法是鉴相法,包括锁相法和内插法两种。锁相法采用传统锁相环,需要不断调整本地时钟的频率和相位,不适合宽速率范围的基带码元同步。而内插法则利用数字信号的内插原理,通过计算直接得到最佳判决点的值和相位。

Gardner算法即是基于内插法的原理,通过定时环路调整内插计算的参数,从而跟踪和锁定位同步信号,该算法的优点在于不需要改变本地采样时钟,可以适应较宽速率范围内的基带信号,因而具有传统方法不可替代的优势。Gardner算法的实现方法,为算法的应用提供了基础。Farrow结构非常适合实现Gardner算法的核心,即内插滤波器部分,其优点是资源占用较少,且滤波器系数实时计算,便于内插参数调整。定时误差检测,但在定时误差检测时需要信号中存在判定信息,并且对载波相位偏差敏感。不足进行了改进,提出了GA-TED(Gardner Timing Error Detection)算法,其优点是不需要预知判定信息,且独立于载波同步,并且适合FPGA 实现。改进的Gardner 算法,并将其应用于M-PSK 系统。提高了Gardner 算法的抗自噪声能力,即降低了对本地时钟的要求。

本文基于FPGA 平台并采用Gardner 算法设计,其中,内插滤波器采用Farrow 结构,定时误差检测采用GA-TED算法。同时对传统Gardner算法结构进行了改进,使环路滤波器和NCO的参数可由外部控制器设置,以适应不同速率的基带码元,实现通用的位同步器的设计方案。此外,本设计方案还对FPGA 代码进行了优化,节省了大量硬件资源。最后进行了仿真和分析,给出了仿真结果,证实了该方案的可行性。

1 传统Gardner 算法与改进

1.1 传统Gardner算法基本原理

传统Gardner算法结构如图1所示。

在图1中,输入的连续时间信号x(t) 码元周期为T,频带受限。在满足奈奎斯特定理的条件下,接收端采用独立时钟对x(t) 进行采样。内插滤波器计算出内插值y(k),送至定时环路进行误差反馈和参数调整,并与控制器输出的位同步脉冲BS一起送往解调器的抽样判决器。

定时环路包含定时误差检测、环路滤波器和控制器。定时误差检测提取插值时刻和最佳判决时刻的误差;该误差经环路滤波器滤除高频噪声后送给控制器;控制器计算插值时刻(即为位同步信号的2倍频)和误差间隔。插值时刻和误差间隔用于调整内插滤波器的系数,使插值时刻尽可能与最佳判决点同相,最终实现位同步信号的提取。

1.2 改进的Gardner算法结构

从上节可以看出,传统Gardner算法无法满足较宽速率范围基带信号的位同步要求。为实现该要求,本设计在FPGA 平台的基础上,对算法实现结构进行了改进,改进结构如图2所示。

图2中,内插滤波器采用Farrow结构的FIR 滤波器实现,滤波器系数实时计算;定时误差检测采用独立于载波且采样点较少的GA-TED 算法;环路滤波器、内部控制器可由外部控制器设置参数,基带码元速率变化时,相应参数可以随之变化。因此,本设计可以满足位同步器的通用性要求。

该同步器工作过程如下:外部控制器根据基带码元速率设置相应参数,通过外部控制器接口将控制、地址和数据信号分别送往分频器、环路滤波器和内部控制器。时钟电路分别提供采样时钟和FPGA 时钟,FPGA工作时钟在片内通过分频器产生所需频率的时钟,供FPGA 各模块使用。输入连续时间信号x(t) 经由独立时钟控制的ADC 进行采样,转换为8 位数字信号送至FPGA 内,符号化后变为有符号数字序列,送入内插滤波器模块。内插滤波器根据输入信号的采样值和内部控制器给出的参数μk,在每个插值时刻kTi 计算出最佳判决点的内插值y(kTi)。定时误差检测计算出误差μτ (n),输出至环路滤波器。环路滤波器依据当前的参数设定,滤除噪声并将误差信息送给内部控制器。内部控制器以NCO为核心,根据处理后的误差信息和设定的频率字参数调整插值时刻kTi,使之尽可能接近最佳判决时刻,并输出位同步脉冲BS,同时计算出误差间隔μk 送给内插滤波器,进行内插值计算,最终完成定时信息的恢复。

2 FPGA设计

2.1 整体结构设计

根据图2的算法结构,FPGA设计采用模块化方式,整体结构的顶层图如图3所示。

从图3可以看到,该设计包含分频器(DIV_FRE)、符号化(SYM)、内插滤波器(INTERPOLATION)、定时误差检测(TED)、环路滤波器(LPF)、内部控制器(INTER_CTL)和外部控制器接口的时序电路(EXTER_CTL)共7个模块。其中,分频器由片外晶振提供时钟输入,分频后为片内其他模块提供相应时钟。其中码元时钟的分频系数可由外部控制器通过接口进行设置。符号化是将A/D采样产生的无符号数转换为有符号数,以便后续模块进行带符号的运算。

外部控制器接口的时序电路将外部控制器送来的控制信号(ALE和RD)、地址信号(P2.0、P2.1)和数据信号(P0口)、转换为FPGA 内分频器、环路滤波器和NCO的使能信号和参数,实现对位同步器各参数的设置。

分频器、符号化和外部控制器接口模块实现较为简单,不再赘述。而内插滤波器、定时误差检测、环路滤波器和内部控制器的实现较为复杂,且本设计通过采用相应算法和改进结构,实现了位同步器的通用性。本文将详细阐述这些模块的设计。

0次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭