当前位置:首页 > 工业控制 > 电子设计自动化
[导读]首先介绍一个计算时间差的函数,它在<time.h>头文件中定义,于是我们只需这样定义2个变量,再相减就可以计算时间差了。 函数开头加上 clock_t start = clock(); 函数结尾加上 clock_t end = clock(); 于是时间差为:

首先介绍一个计算时间差的函数,它在<time.h>头文件中定义,于是我们只需这样定义2个变量,再相减就可以计算时间差了。

函数开头加上

clock_t start = clock();

函数结尾加上

clock_t end = clock();

于是时间差为: end - start

不过这不精确的 多次运行时间是不同的 和CPU 进程有关吧

(先总结一下:以下算法以时间和空间以及编码难度,以及实用性方面来看,快速排序法是最优秀的!推荐!~

但是希尔排序又是最经典的一个,所以建议优先看这2个排序算法)

排序算法是一种基本并且常用的算法。由于实际工作中处理的数量巨大,所以排序算法

对算法本身的速度要求很高。

而一般我们所谓的算法的性能主要是指算法的复杂度,一般用O方法来表示。在后面我将

给出详细的说明。

对于排序的算法我想先做一点简单的介绍,也是给这篇文章理一个提纲。

我将按照算法的复杂度,从简单到难来分析算法。

第一部分是简单排序算法,后面你将看到他们的共同点是算法复杂度为O(N*N)(因为没有

使用word,所以无法打出上标和下标)。

第二部分是高级排序算法,复杂度为O(Log2(N))。这里我们只介绍一种算法。另外还有几种

算法因为涉及树与堆的概念,所以这里不于讨论。

第三部分类似动脑筋。这里的两种算法并不是最好的(甚至有最慢的),但是算法本身比较

奇特,值得参考(编程的角度)。同时也可以让我们从另外的角度来认识这个问题。

第四部分是我送给大家的一个餐后的甜点——一个基于模板的通用快速排序。由于是模板函数

可以对任何数据类型排序(抱歉,里面使用了一些论坛专家的呢称)。

现在,让我们开始吧:

一、简单排序算法

由于程序比较简单,所以没有加什么注释。所有的程序都给出了完整的运行代码,并在我的VC环境

下运行通过。因为没有涉及MFC和WINDOWS的内容,所以在BORLAND C++的平台上应该也不会有什么

问题的。在代码的后面给出了运行过程示意,希望对理解有帮助。

1.冒泡法:

这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡:

#include <iostream.h>

void BubbleSort(int* pData,int Count)

{

int iTemp;

for(int i=1;i<Count;i++)

{

for(int j=Count-1;j>=i;j--)

{

if(pData[j]<pData[j-1]) [Page]

{

iTemp = pData[j-1];

pData[j-1] = pData[j];

pData[j] = iTemp;

}

}

}

}

void main()

{

int data[] = {10,9,8,7,6,5,4};

BubbleSort(data,7);

for (int i=0;i<7;i++)

cout<<data[i]<<" ";

cout<<"\n";

}

倒序(最糟情况)

第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次)

第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次)

第一轮:7,8,10,9->7,8,9,10(交换1次)

循环次数:6次

交换次数:6次

其他:

第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次)

第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次)

第一轮:7,8,10,9->7,8,9,10(交换1次)

循环次数:6次

交换次数:3次

上面我们给出了程序段,现在我们分析它:这里,影响我们算法性能的主要部分是循环和交换,

显然,次数越多,性能就越差。从上面的程序我们可以看出循环的次数是固定的,为1+2+...+n-1。

写成公式就是1/2*(n-1)*n。

现在注意,我们给出O方法的定义:

若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。(呵呵,不要说没

学好数学呀,对于编程数学是非常重要的!!!)

现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n)

=O(g(n))=O(n*n)。所以我们程序循环的复杂度为O(n*n)。

再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。其实交换本身同数据源的

有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换),

复杂度为O(n*n)。当数据为正序,将不会有交换。复杂度为O(0)。乱序时处于中间状态。正是由于这样的

原因,我们通常都是通过循环次数来对比算法。

2.交换法:

交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。

#include <iostream.h>

void ExchangeSort(int* pData,int Count)

{

int iTemp;

for(int i=0;i<Count-1;i++)

{

for(int j=i+1;j<Count;j++)

{

if(pData[j]<pData[i]) [Page]

{

iTemp = pData[i];

pData[i] = pData[j];

pData[j] = iTemp;

}

}

}

}

void main()

{

int data[] = {10,9,8,7,6,5,4};

ExchangeSort(data,7);

for (int i=0;i<7;i++)

cout<<data[i]<<" ";

cout<<"\n";

}

倒序(最糟情况)

第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次)

第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次)

第一轮:7,8,10,9->7,8,9,10(交换1次)

循环次数:6次

交换次数:6次

其他:

第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次)

第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次)

第一轮:7,8,10,9->7,8,9,10(交换1次)

循环次数:6次

交换次数:3次

从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样

也是1/2*(n-1)*n,所以算法的复杂度仍然是O(n*n)。由于我们无法给出所有的情况,所以

只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。

3.选择法:

现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下)

这种方法类似我们人为的排序习惯:从数据中选择最小的同第一个值交换,在从省下的部分中

选择最小的与第二个交换,这样往复下去。

#include <iostream.h>

void SelectSort(int* pData,int Count)

{

int iTemp; //一个存储值。

int iPos; //一个存储下标。

for(int i=0;i<Count-1;i++)

{

iTemp = pData[i];

iPos = i;

for(int j=i+1;j<Count;j++)

{

if(pData[j]<iTemp) //选择排序法就是用第一个元素与最小的元素交换。

{

iTemp = pData[j];

iPos = j; //下标的交换赋值。 [Page]

}

}

pData[iPos] = pData[i];

pData[i] = iTemp;

}

}

void main()

{

int data[] = {10,9,8,7,6,5,4};

SelectSort(data,7);

for (int i=0;i<7;i++)

cout<<data[i]<<" ";

cout<<"\n";

}

倒序(最糟情况)

第一轮:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交换1次)

第二轮:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交换1次)

第一轮:7,8,9,10->(iTemp=9)7,8,9,10(交换0次)

循环次数:6次

交换次数:2次

其他:

第一轮:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交换1次)

第二轮:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交换1次)

第一轮:7,8,10,9->(iTemp=9)7,8,9,10(交换1次)

循环次数:6次

交换次数:3次

遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。所以算法复杂度为O(n*n)。

我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n

所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。

4.插入法:

插入法较为复杂,它的基本工作原理是抽出牌,在前面的牌中寻找相应的位置插入,然后继续下一张

#include <iostream.h>

void InsertSort(int* pData,int Count)

{

int iTemp;

int iPos;

for(int i=1;i<Count;i++)

{

iTemp = pData[i];

iPos = i-1;

while((iPos>=0) && (iTemp<pData[iPos]))

{

pData[iPos+1] = pData[iPos];

iPos--;

}

pData[iPos+1] = iTemp;

}

}

void main()

{

int data[] = {10,9,8,7,6,5,4};

InsertSort(data,7);

for (int i=0;i<7;i++)

cout<<data[i]<<" ";

cout<<"\n";

}

倒序(最糟情况)

第一轮:10,9,8,7->9,10,8,7(交换1次)(循环1次) [Page]

第二轮:9,10,8,7->8,9,10,7(交换1次)(循环2次)

第一轮:8,9,10,7->7,8,9,10(交换1次)(循环3次)

循环次数:6次

交换次数:3次

其他:

第一轮:8,10,7,9->8,10,7,9(交换0次)(循环1次)

第二轮:8,10,7,9->7,8,10,9(交换1次)(循环2次)

第一轮:7,8,10,9->7,8,9,10(交换1次)(循环1次)

循环次数:4次

交换次数:2次

上面结尾的行为分析事实上造成了一种假象,让我们认为这种算法是简单算法中最好的,其实不是,

因为其循环次数虽然并不固定,我们仍可以使用O方法。从上面的结果可以看出,循环的次数f(n)<=

1/2*n*(n-1)<=1/2*n*n。所以其复杂度仍为O(n*n)(这里说明一下,其实如果不是为了展示这些简单

排序的不同,交换次数仍然可以这样推导)。现在看交换,从外观上看,交换次数是O(n)(推导类似

选择法),但我们每次要进行与内层循环相同次数的‘=’操作。正常的一次交换我们需要三次‘=’

而这里显然多了一些,所以我们浪费了时间。

最终,我个人认为,在简单排序算法中,选择法是最好的。

二、高级排序算法:

高级排序算法中我们将只介绍这一种,同时也是目前我所知道(我看过的资料中)的最快的。

它的工作看起来仍然象一个二叉树。首先我们选择一个中间值middle程序中我们使用数组中间值,然后

把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使

用这个过程(最容易的方法——递归)。

1.快速排序:

#include <iostream.h>

void run(int* pData,int left,int right)

{

int i,j;

int middle,iTemp;

i = left;

j = right;

middle = pData[(left+right)/2]; //求中间值

do{

while((pData[i]<middle) && (i<right))//从左扫描大于中值的数

i++;

while((pData[j]>middle) && (j>left))//从右扫描大于中值的数

j--;

if(i<=j)//找到了一对值

{

//交换

iTemp = pData[i];

pData[i] = pData[j];

pData[j] = iTemp;

i++;

j--;

} [Page]

}while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)

//当左边部分有值(left<j),递归左半边

if(left<j)

run(pData,left,j);

//当右边部分有值(right>i),递归右半边

if(right>i)

run(pData,i,right);

}

void QuickSort(int* pData,int Count)

{

run(pData,0,Count-1);

}

void main()

{

int data[] = {10,9,8,7,6,5,4};

QuickSort(data,7);

for (int i=0;i<7;i++)

cout<<data[i]<<" ";

cout<<"\n";

}

这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况

1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。

2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。

第一层递归,循环n次,第二层循环2*(n/2)......

所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n

所以算法复杂度为O(log2(n)*n)

其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变

成交换法(由于使用了递归,情况更糟),但是糟糕的情况只会持续一个流程,到下一个流程的时候就很可能已经避开了该中间的最大和最小值,因为数组下标变化了,于是中间值不在是那个最大或者最小值。但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。

如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢

于快速排序(因为要重组堆)。

三、其他排序

1.双向冒泡:

通常的冒泡是单向的,而这里是双向的,也就是说还要进行反向的工作。

代码看起来复杂,仔细理一下就明白了,是一个来回震荡的方式。

写这段代码的作者认为这样可以在冒泡的基础上减少一些交换(我不这么认为,也许我错了)。

反正我认为这是一段有趣的代码,值得一看。

#include <iostream.h>

void Bubble2Sort(int* pData,int Count)

{

int iTemp;

int left = 1;

int right =Count -1;

int t;

do

{

//正向的部分

for(int i=right;i>=left;i--)

{

if(pData[i]<pData[i-1]) [Page]

{

iTemp = pData[i];

pData[i] = pData[i-1];

pData[i-1] = iTemp;

t = i;

}

}

left = t+1;

//反向的部分

for(i=left;i<right+1;i++)

{

if(pData[i]<pData[i-1])

{

iTemp = pData[i];

pData[i] = pData[i-1];

pData[i-1] = iTemp;

t = i;

}

}

right = t-1;

}while(left<=right);

}

void main()

{

int data[] = {10,9,8,7,6,5,4};

Bubble2Sort(data,7);

for (int i=0;i<7;i++)

cout<<data[i]<<" ";

cout<<"\n";

}

2.SHELL排序

这个排序非常复杂,看了程序就知道了。

首先需要一个递减的步长,这里我们使用的是9、5、3、1(最后的步长必须是1)。

工作原理是首先对相隔9-1个元素的所有内容排序,然后再使用同样的方法对相隔5-1个元素的排序

以次类推。

基本思想:

先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为dl的倍数的记录放在同一个组中(所以d值越小,分组越少,每组的元素越多)。先在各组内进行直接插人排序;然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有记录放在同一组中进行直接插入排序为止。

该方法实质上是一种分组插入方法。

(备注:增量中最好有基数也有偶数,所以可以人为设置)

#include <iostream.h>

int ShellPass(int * array,int d) //一趟增量为d的希尔插入排序

{

int temp;

int k=0;

for(int i=d+1;i<13;i++)

{

if(array[i]<array[i-d])

{

temp=array[i]; [Page]

int j=i-d;

do

{

array[j+d]=array[j];

j=j-d;

k++;

}while(j>0 && temp<array[j]);

array[j+d]=temp;

}

k++;

}

return k;

}

void ShellSort(int * array) //希尔排序

{

int count=0;

int ShellCount=0;

int d=12; //一般增量设置为数组元素个数,不断除以2以取小

do

{

d=d/2;

ShellCount=ShellPass(array,d);

count+=ShellCount;

}while(d>1);

cout<<"希尔排序中,关键字移动次数为:"<<count<<endl;

}

void main()

{

int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1};

ShellSort(data);

for (int i=0;i<12;i++)

cout<<data[i]<<" ";

cout<<"\n";

}

算法分析

1.增量序列的选择

Shell排序的执行时间依赖于增量序列。

好的增量序列的共同特征:

① 最后一个增量必须为1;

② 应该尽量避免序列中的值(尤其是相邻的值)互为倍数的情况。

有人通过大量的实验,给出了目前较好的结果:当n较大时,比较和移动的次数约在nl.25到1.6n1.25之间。

2.Shell排序的时间性能优于直接插入排序

希尔排序的时间性能优于直接插入排序的原因:

①当文件初态基本有序时直接插入排序所需的比较和移动次数均较少。

②当n值较小时,n和n2的差别也较小,即直接插入排序的最好时间复杂度O(n)和最坏时间复杂度0(n2)差别不大。

③在希尔排序开始时增量较大,分组较多,每组的记录数目少,故各组内直接插入较快,后来增量di逐渐缩小,分组数逐渐减少,而各组的记录数目逐渐增多,但由于已经按di-1作为距离排过序,使文件较接近于有序状态,所以新的一趟排序过程也较快。

因此,希尔排序在效率上较直接插人排序有较大的改进。

3.稳定性

希尔排序是不稳定的。

四、基于模板的通用排序:

这个程序我想就没有分析的必要了,大家看一下就可以了。不明白可以在论坛上问。

MyData.h文件

///////////////////////////////////////////////////////

class CMyData

{

public:

CMyData(int Index,char* strData);

CMyData();

virtual ~CMyData(); [Page]

int m_iIndex;

int GetDataSize(){ return m_iDataSize; };

const char* GetData(){ return m_strDatamember; };

//这里重载了操作符:

CMyData& perator =(CMyData &SrcData);

bool operator <(CMyData& data );

bool operator >(CMyData& data );

private:

char* m_strDatamember;

int m_iDataSize;

};

////////////////////////////////////////////////////////

MyData.cpp文件

////////////////////////////////////////////////////////

CMyData::CMyData():

m_iIndex(0),

m_iDataSize(0),

m_strDatamember(NULL)

{

}

CMyData::~CMyData()

{

if(m_strDatamember != NULL)

delete[] m_strDatamember;

m_strDatamember = NULL;

}

CMyData::CMyData(int Index,char* strData):

m_iIndex(Index),

m_iDataSize(0),

m_strDatamember(NULL)

{

m_iDataSize = strlen(strData);

m_strDatamember = new char[m_iDataSize+1];

strcpy(m_strDatamember,strData);

}

CMyData& CMyData::operator =(CMyData &SrcData)

{

m_iIndex = SrcData.m_iIndex;

m_iDataSize = SrcData.GetDataSize();

m_strDatamember = new char[m_iDataSize+1];

strcpy(m_strDatamember,SrcData.GetData());

return *this;

}

bool CMyData::operator <(CMyData& data )

{

return m_iIndex<data.m_iIndex;

}

bool CMyData::operator >(CMyData& data )

{

return m_iIndex>data.m_iIndex;

}

///////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////

//主程序部分

#include <iostream.h>

#include "MyData.h"

template <class T>

void run(T* pData,int left,int right)

{

int i,j;

T middle,iTemp;

i = left; [Page]

j = right;

//下面的比较都调用我们重载的操作符函数

middle = pData[(left+right)/2]; //求中间值

do{

while((pData[i]<middle) && (i<right))//从左扫描大于中值的数

i++;

while((pData[j]>middle) && (j>left))//从右扫描大于中值的数

j--;

if(i<=j)//找到了一对值

{

//交换

iTemp = pData[i];

pData[i] = pData[j];

pData[j] = iTemp;

i++;

j--;

}

}while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)

//当左边部分有值(left<j),递归左半边

if(left<j)

run(pData,left,j);

//当右边部分有值(right>i),递归右半边

if(right>i)

run(pData,i,right);

}

template <class T>

void QuickSort(T* pData,int Count)

{

run(pData,0,Count-1);

}

void main()

{

CMyData data[] = {

CMyData(8,"xulion"),

CMyData(7,"sanzoo"),

CMyData(6,"wangjun"),

CMyData(5,"VCKBASE"),

CMyData(4,"jacky2000"),

CMyData(3,"cwally"),

CMyData(2,"VCUSER"),

CMyData(1,"isdong")

};

QuickSort(data,8);

for (int i=0;i<8;i++)

cout<<data[i].m_iIndex<<" "<<data[i].GetData()<<"\n";

cout<<\n;



来源:向明天进军0次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭