高速PCB设计仿真讲座二
扫描二维码
随时随地手机看文章
1.1.2 边缘速率引发高速问题 EDA设计工程师发现 SI问题的起因不仅仅是高速设计。真正的原因不是系统时钟速率的提高,而是驱动器上升和下降时间的缩短。随着芯片制造工艺技术的进步及IC制造商转向采用 0.25 微米或更小工艺,他们所生产的标准元件的裸片尺寸越来越小;边缘速率越来越快,最终会导致 PCB设计中高速问题的产生,而传统的高速分析是不考虑这类问题的。 此外,当IC制造商转向可在更小面积上封装更多功能的高密度器件时,需要开发新型的封装技术。现在,BGA、CSP 和 MCM 等封装技术都可根据设计要求,在小型封装内提供更多的引脚和更少的封装寄生参数。尽管这些新型器件体积极小,但它们也有其自身的问题。例如,互连线较长 。 即便不考虑系统时钟速率,高的上升时间和更长的走线长度也让设计工程师面临着严峻的挑战。只要传输线长度引起的延迟超过驱动器上升/下降时间有效长度的六分之一,就会引起传输线问题。例如,若上升时间为 1 ns,走线边缘速率为每英寸 2ns,只要走线长度超过 1 英寸,就会发生传输线问题。众所周知,走线长度小于1 英寸的极为少见。因此,采用上升时间为 1ns 的设计肯定会出现高速设计问题。随着新型 IC 工艺的出现,情况会变得越来越糟。因为上升时间将很快发展到 1ns 以下。实际上,大约每隔三年晶体管门长度就会缩短,而其相应的开关速率会增长约 30%。 SI问题的表现方式很多。当边缘速率上升时,时序问题首先暴露出来。传输线效应造成的阻尼振荡(Ringing)、正尖峰(overshoot)和负尖峰(undershoot)有可能超过规定的噪音容限。在低速系统中,互连延迟和阻尼振荡可以忽略不计,因为在这种系统中信号有足够的时间达到稳定。但是当边缘速率加快,系统时钟速率上升时,信号在器件之间的传输时间以及同步准备时间都缩短了。 当边缘速率低于1ns时,串扰问题也出现了。通常串扰问题出现在高边缘速率、高密度的上,其成因是走线之间的耦合。亚纳秒级边缘速率会引起高频谐振,很容易耦合到邻近的互连线中,从而造成串扰,拥有大量高速互连的特别容易产生此类问题。 当高速器件的边缘速率低于 0.5ns 时,电源系统稳定性和 EMI等问题也随之产生。来自大容量数据总线的数据交换速率特别快,当它在电源层中产生足以影响信号的强波纹时,就会产生电源稳定性问题。高速信号也可能产生辐射,EMI因而也成为要关注的另一个设计问题。1.1.3 传输线效应 PCB板上的走线可等效为下图所示的串联和并联的电容、电阻和电感结构。串联电阻的典型值 0.25-0.55 ohms/foot,因为绝缘层的缘故,并联电阻阻值通常很高。将寄生电阻、电容和电感加到实际的 PCB 连线中之后,连线上的最终阻抗称为特征阻抗 Zo。线径越宽,距电源/地越近,或隔离层的介电常数越高,特征阻抗就越小。如果传输线和接收端的阻抗不匹配,那么输出的电流信号和信号最终的稳定状态将不同,这就引起信号在接收端产生反射,这个反射信号将传回信号发射端并再次反射回来。随着能量的减弱反射信号的幅度将减小,直到信号的电压和电流达到稳定。这种效应被称为振荡,信号的振荡在信号的上升沿和下降沿经常可以看到。 注:关于传输线的等效电路请参照电气篇中的“相关计算”。图 1-4 传输线的等效电路