??避免ISM-RF产品中的PCB设计“缺陷”
扫描二维码
随时随地手机看文章
工业、科学和医疗系统射频(ISM-RF)产品的电路设计往往非常紧凑。为避免常见的设计缺陷或“陷阱”,需要特别注意这些应用的布局。这些产品可能工作在300MHz至915MHz之间的任何ISM频带,其接收机和发射机的RF功率范围通常介于-120dBm至+13dBm之间。本文主要讨论了电感放置的方向、线路耦合、接地过孔以及引线长度、接地、晶体电容、引线电感等诸多问题。
引言
工业、科学和医疗射频(ISM-RF)产品的无数应用案例表明,这些产品的印制板()布局很容易出现各种缺陷。人们时常发现相同IC安装到两块不同电路板上,所表现的性能指标会有显着差异。工作条件、谐波辐射、抗干扰能力,以及启动时间等等诸多因素的变化,都能说明电路板布局在一款成功设计中的重要性。
本文罗列了各种不同的设计疏忽,探讨了每种失误导致电路故障的原因,并给出了如何避免这些设计缺陷的建议。本文以FR-4电介质、厚度0.0625in的双层为例,电路板底层接地。工作频率介于315MHz到915MHz之间的不同频段,Tx和Rx功率介于-120dBm至+13dBm之间。表1列出了一些可能出现的布局问题、原因及其影响。
表1. 典型的布局问题和影响
Problem
Cause
Effect
LNA/tank circuit arrangement (receiver)
Inductor orientation
RF feedthrough
Degeneration/π-network arrangement (transmitter)
Inductor orientation
RF feedthrough
Shared ground vias between legs of π network
Via parasitics
Feedthrough, RF leakage
Shared ground vias between receiver blocks
Via parasitics
Crosstalk, RF feedthrough, RF leakage
Long traces for decoupling capacitors
Higher-impedance connections
Reduced decoupling
Wide component placement
Increased parasitics, ground loops
Detuning, crosstalk, feedthrough
Colinear traces in the transmitter circuit
Filter bypassing, i.e., power amplifier (PA) directly to antenna
Harmonics radiation
Top-layer copper pours
Parasitic coupling
RF leakage, RF interference
Discontinuous ground plane
Return current concentration
Crosstalk, feedthrough
Crystal connection trace length
Excess capacitance
LO frequency pulling
Crystal connection trace separation
Excess capacitance
LO frequency pulling
Ground plane under crystal pads
Excess capacitance
LO frequency pulling
Planar trace inductors
Poor inductance control
Large footprint, low Q, crosstalk, feedthrough
其中大多数问题源于少数几个常见原因,我们将对此逐一讨论。
电感方向
当两个电感(甚至是两条走线)彼此靠近时,将会产生互感。第一个电路中的电流所产生的磁场会对第二个电路中的电流产生激励(图1)。这一过程与变压器初级、次级线圈之间的相互影响类似。当两个电流通过磁场相互作用时,所产生的电压由互感LM决定:
式中,YB是向电路B注入的误差电压,IA是在电路A作用的电流。LM对电路间距、电感环路面积(即磁通量)以及环路方向非常敏感。因此,紧凑的电路布局和降低耦合之间的最佳平衡是正确排列所有电感的方向。
图1. 由磁力线可以看出互感与电感排列方向有关
对电路B的方向进行调整,使其电流环路平行于电路A的磁力线。为达到这一目的,尽量使电感互相垂直,请参考低功率FSK超外差接收机评估(EV)板(MAX7042EVKIT)的电路布局(图2)。该电路板上的三个电感(L3、L1和L2)距离非常近,将其方向排列为0°、45°和90°,有助于降低彼此之间的互感。
图2. 图中所示为两种不同的布局,其中一种布局的元件排列方向不合理(L1和L3),另一种的方向排列则更为合适。
综上所述,应遵循以下原则:
●电感间距应尽可能远。
●电感排列方向成直角,使电感之间的串扰降至最小。
引线耦合
如同电感排列方向会影响磁场耦合一样,如果引线彼此过于靠近,也会影响耦合。这种布局问题也会产生所谓的互感。RF电路最关心问题之一即为系统敏感部件的走线,例如输入匹配网络、接收器的谐振槽路、发送器的天线匹配网络等。