当前位置:首页 > 工业控制 > 电子设计自动化

内容:在高频电路中,串音可能是最难理解和预测的,但是,它可以被控制甚至被消除掉。 随着切换速度的加快,现代数字系统遇到了一系列难题,例如:信号反射、延迟衰落、串音、和电磁兼容失效等等。当集成电路的切换时间下降到5纳秒或4纳秒或更低时,印刷本身的固有特性开始显现出来。不幸的是,这些特性是有害的,在设计过程中应该尽量设法避开。在高频电路中,串音可能是最难理解和预测的,但是,它可以被控制甚至被消除掉。 1、 串音由何引起? 当信号沿着印刷的布线传播时,其电磁波也沿着布线传播,从集成电路芯片一端传到线的另一端。在传播过程中,由於电磁感应,电磁波引起了瞬变的电压和电流。 电磁波包括随时间变化的电场和磁场。在印刷中,实际上,电磁场并不限制在各种布线内,有相当一部分的电磁场能量存在於布线之外。所以,如果附近有其它线路,当信号沿一根导线传播时,其电场和磁场将会影响到其它线路。根据麦克斯韦尔方程,时变电及磁场会使邻近导产生电压和电流,因此,信号传播过程中伴随的电磁场将会使邻近线路产生信号,这样,就导致了串音。 在印刷中,引起串音的线路通常称为“侵入者”。受串音干扰的线路通常称为“受害者”。在任何“受害者”中的串音信号都可被分为前向串音信号和後向串音信号,这两种信号部分地由於电容耦合和电感耦合引起。串音信号的数学描述是非常复杂的,但是,如同湖面上的高速快艇,前向和後向串音信号的某些量化特徵还是能被人们所理解。 高速快艇对水产生两种影响。首先,快艇在船头激起浪花,弧形的涟漪好像随着快艇一起前进;其次,当快艇行驶一段时间後,会在身後留下长长的水迹。 这很类似於信号通过“侵入者”时, “受害者”的反应。“受害者”中有两种串音信号:位於侵入信号之前的前向信号,像船头的水和涟漪;落後於侵入信号的後向信号,像船开远後仍在湖中的水迹。 2、前向串音的电容特性 前向串音表现为两种相互关联的特性:容性和感性。“侵入”信号前进时,在“受害者”中产生与之同相的电压信号,这个信号的速度与“侵入”信号相同,但又始终位於“侵入”信号之前。这意味着串音信号不会提前传播,而是和“侵入”信号同速并耦合入更多的能量。由於“侵入”信号的变化引起串音信号,所以前向串音脉冲不是单极性的,而是具有正负两个极性。脉冲持续时间等於“侵入”信号的切换时间。 导线间的耦合电容决定了前向串音脉冲的幅值,而耦合电容是由许多因素决定的,例如印刷的材料,几何尺寸,线路交叉位置等等。幅值和平行线路间的距离成比例:距离越长,串音脉冲就越大。然而,串音脉冲幅值有一个上限,因为“侵入”信号渐渐地失去了能量,而“受害者”又反过来耦合回“侵入者”。 前向串音的电感特性 当“侵入”信号传播时,它的时变磁场同样会产生串音:具有电感特性的前向串音。但是感性串音和容性串音明显不同:前向感性串音的极性和前向容性串音的极性相反。这因为在前进方向,串音的容性部分和感性部分在竞争,在相互抵消。实际上,当前向容性和感性串音相等时,就不存在前向串音。 在许多设备中,前向串音相当小,而後向串音成了主要问题,尤其对於长条形,因为电容耦合增强了。但是,在没有仿真的前提下,实际无法知道感性和容性串音抵消到何种程度。 如果你测到了前向串音,你就可以根据其极性判别你的走线是容性耦合还是感性耦合。如果串音极性和“侵入”信号相同,容性耦合占主要地位,反之,感性耦合占主要地位。在印刷中,通常是感性耦合更强些。 後向串音发生的物理理和前向串音相同:“侵入”信号的时变电场和磁场引起“受害者”中的感性和容性信号。但是这两者之间也有所不同。 最大的不同是後向串音信号的持续时间。因为前向串音和“侵入”信号的传播方向及速度相同,所以前向串音的持续时间和“侵入”信号等长。但是,後向串音和“侵入”信号反方向传播,它滞後於“侵入”信号,并引起一长串脉冲。 与前向串音不同,後向串音脉冲的幅值与线路长度无关,其脉冲持续期是“侵入”信号延迟时间的两倍。为什麽呢?假设你从信号出发点观察後向串音,当“侵入”信号远离出发点时,它仍在产生後向脉冲,直到另一个延迟信号出现。这样,後向串音脉冲的整个持续时间就是“侵入”信号延迟时间的两倍。 3、後向串音的反射 你可能不关心驱动芯片和接收芯片的串音干扰。然而,你为什麽要关心後向脉冲呢?因为驱动芯片一般是低阻输出,它反射的串音信号多於吸收的串音信号。当後向串音信号到达“受害者”的驱动芯片时,它会反射到接收芯片。因为驱动芯片的输出电阻一般低於导线本身,常常引起串音信号的反射。与前向串音信号具有感性和容性两种特性不同,後向串音信号只有一个极性,所以後向串音信号就不能自我抵消。後向串音信号及其反射之後的串音信号的极性和“侵入”信号相同,其幅值是两部分之和。 切记,当你在“受害者”的接收端测到後向串音脉冲时,这个串音信号已经经过了“受害者”驱动芯片的反射。你可以观察到後向串音信号的极性和“侵入”信号相反。 在数字设计时,你常常关心一些量化指标,例如:不管串音是如何产生,何时产生,前向还是後向的,它的最大噪声容限为150mV。那麽,存在简单的能够精确衡量噪声的方法吗?简单的回答是“没有”,因为电磁场效应太复杂了,涉及到一系列方程,的拓扑结构,芯片的模拟特性等等。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭