当前位置:首页 > 工业控制 > 电子设计自动化

摘 要: 应用Altera公司的StratixTMII系列FPGA EP2S30F484I5芯片和基于Camera Link接口的数码相机CV-A10CL,设计实现了对高分辨率黑白数字图像进行拆分压缩、解压缩及PCI总线接入拼接恢复的系统。系统分为数码相片压缩单元、数码相片解压缩单元和基于MFC的图像拼接恢复程序。数码相片压缩单元完成对来自相机Camera Link接口数据的接收、缓存、图像数据压缩并发送,数码相片解压缩单元完成对接收到的已压缩的图像数据进解压缩,并将解压缩后的图像数据通过PCI总线传输至PC上显示。
关键词: FPGA;Camera Link;ADV202;PCI总线;图像的拆分压缩;解压缩拼接

Camera Link[1]是工业高速串口数据和连接协议,它由世界数码相机供应商和图像采集公司在2000年10月联合推出,旨在为数码相机和PC机间的高速、高精度数字传输提供一种标准连接。本设计就是基于Altera公司的StratixTM II系列芯片中的FPGA EP2S30F484I5芯片和数码相机CV-A10CL[2]设计的一个可以实时显示的图像传输系统。由于ADV202所能压缩的每幅图像最大样本数为1.048 M,即1 024×1 024分辨率的图像。对于本设计中的4 008×5 344分辨率的图像进行传输必须要对图像进行分割压缩,然后在接收端合并恢复出完整的图像。在本设计中,FPGA的作用是对通信的所有过程进行控制和对数据进行处理。
1 高分辨率图像拆分与合并传输原理
由于ADV202[3]所能压缩的每幅图像最大样本数为1.048 M,即1 024×1 024分辨率的图像。所以4 008×5 344分辨率的图像进行传输必须要对图像进行分割压缩,然后在接收端合并恢复出完整的图像。
按照ADV202的技术手册,在采用低压缩比对图像进行压缩时,在解压端可以不考虑图像拆分时的边界效应,直接对图像进行合并。但是在本项目中,必须支持8~80倍的图像压缩。而在80倍图像压缩时,还是会明显感觉出图像间的拼接效果,所以必须要考虑图像的边界效应。
针对以上分析,将4 008×5 344分辨率的图像水平方向拆分成4幅图,垂直方向拆分成6幅图,总共拆成24幅1 024×1 024分辨率的图像进行传输。拆分方法如图1所示。

为了解决图像间水平方向的边界效应,水平方向上每幅图都需要和相邻的图像有一定的图像数据冗余。在接收端,通过冗余的图像数据来覆盖掉边界图像。例如Pic1和Pic2为水平方向相邻的两幅图像,在它们之间引入水平方向24个像素的图像冗余。在接收端,将Pic1每行的最后12个像素点用Pic2的对应像素点替换,这样就可以消除图像间的水平边界效应。每幅图像水平方向的起始像素点和结束像素点如图1(a)所示。
同理,也可以在垂直方向采用相同的方法,每幅图像垂直方向的起始像素点和结束像素点如图1(b)所示。
采用以上方法就可以将4 008×5 344分辨率的图像拆分成如图1(c)所示的24幅具有冗余度的图像。

2 系统整体设计方案
图像传输系统由数码相片压缩单元和数码相片解压缩单元组成[4-5]。数码相片压缩单元通过Camera Link接口连接数码相机接收数码相片原始数据,并对数码相片原始数据进行压缩,然后将要测数据与压缩数据合成为数码相片数据流,最后将数码相片数据流和码同步时钟通过RS422同步接口输出到下一个设备;数码相片解压单元接收到数码相片数据流后,通过RS422同步接口传送给解压卡,解压卡进行解压后,通过PCI总线把数据传输到PC机上,最后进行数据显示、存储和网络发送等。压缩与解压缩单元组成框图如图2所示。

3 系统工作原理
3.1 图像压缩单元工作原理
即使同时使用两片图像压缩芯片ADV202,也仅仅能够支持一路高清电视的分辨率的图像,与4 008×5 344仍然存在较大差距。因此,考虑采用将一幅图片进行拆分,分为多帧压缩传送,保证整幅照片的数据传送。工作逻辑框图如图3所示。

从Camera Link接收的数据在SDRAM[6-7]中缓存,当数据存满一张完整照片时,采用连续发送的方式将数据送入ADV202压缩,ADV202返回的数据与遥测数据混合成帧,然后发送到AHA4501[8]芯片完成信道编码编码的数据,在FPGA控制下,采用同步方式从RS422数据口输出。
3.2 图像解压缩单元工作原理
在接收端,采用如图4的结构。接收到的信道数据,首先在FPGA内部进行信道解码恢复成图像数据和遥测数据帧,将遥测数据从RS422接口输出,完成遥测数据的处理。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭