当前位置:首页 > 工业控制 > 电子设计自动化
[导读]摘要:在高速印刷电路板(PCB)设计中,逻辑门元器件速度的提高,使得PCB传输线效应成了电路正常工作的制约因素。对传输线做计算机仿真,可以找出影响信号传输性能的各种因素,优化信号的传输特性。采用全电荷格林函数

摘要:在高速印刷电路板(PCB)设计中,逻辑门元器件速度的提高,使得PCB传输线效应成了电路正常工作的制约因素。对传输线做计算机仿真,可以找出影响信号传输性能的各种因素,优化信号的传输特性。采用全电荷格林函数法结合矩量法提取高速PCB传输线分布参数并建立等效时域网络模型,应用端接I/O缓冲器IBIS瞬态行为模型,对实际PCB布线进行电气特性仿真,其结果与Cadence公司的SPECCTRAQUEST软件仿真结果一致,且仿真效率得到提高。

关键词:传输线;全电荷格林函数法;高速印刷电路板;IBIS模型

随着技术的进步,目前高速集成电路的信号切换时间已经达到几百皮秒(ps),时钟频率也已达到几百兆赫兹(MHz),如此高的边沿速率导致印刷电路板上的大量互连线产生低速电路中所没有的传输线效应,使信号产生失真,严重影响信号的正确传输。因此有必要对高速印刷电路板(PCB)传输线建模并进行计算机仿真,这样一方面可以确定高速信号传输线的时域网络模型,另一方面也可以通过仿真找出影响信号传输性能的各种因素,以便采取措施,尽可能地优化信号的传输特性,保证系统的可靠及高性能工作。

当前电路工作频率不断提高,当其达到一定程度后,系统的波特性必然变得十分明显。在PCB设计中传输线的尺寸较大,其波特性应首先考虑。对传输线的分析必须采用L、C、R、G分布参数模型,这样系统的电特性分析和电磁场分析密切相关。基于这种模型,应对传输线的布局布线进行分析和仿真,由此来指导PCB设计。文中就是采用全电荷格林函数法结合矩量法提取传输线的电路元件参数模型,包括集总参数和分布参数(分布电容C、电感L、电阻R和电导G),在建立传输线等效时域模型及提取参数的基础上进行电路分析,应用端接I/O缓冲器IBIS瞬态行为模型,对实际PCB布线进行电气特性仿真。

采用全电荷格林函数法结合矩量法提取分布参数

对单根传输线,C、L、R、G是4个基本的分布参量,由此还可导出特性阻抗、相速或相位常数等参量。其中分布电阻R由所采用的导体材料和物理特性所决定的,而分布电容参数C是最重要的分布参数,因为一旦获知分布电容参数,除R以外的其他分布参数都可以通过公式转换得到。

为提取多根导体的分布电容矩阵,必须首先在给定导体电位的条件下求出各根导体的自由电荷电量其求解过程应求得格林函数,而多层介质下的格林函数之所以复杂,在于介质的不均匀。界面上的极化电荷会产生附加电位,其影响将叠加到格林函数的自由空间分量上。因此不妨将自由电荷和极化电荷都作为产生电位的场源,格林函数就可看成单位点电荷(三维)或单位线电荷(二维)在介质均匀的无限空间产生的电位。矩量法即是近似地将待解函数表示为N个相互正交的基函数求和展开式,每一基函数均乘以某一系数。

对于具有多根导体的系统内的分布电容,除了要考虑每一根导体自身的分布参量,还应考虑其与其他各导体之间耦合效应的互分布参量,如图1所示。其分布参量应表示为分布参量矩阵。对N根导体进行分析,其分布电量q与电位φ的关系如下:


图1 多导体系统的部分电容

从式(1)多导体线分布电容参数的定义可知,电容参数的提取必须求解给定导体电位的静电场,它是一个偏微分方程的边值问题。通过源区解法求解,其主要问题是积分方程中的核函数——格林函数求取问题。将全电荷格林函数积分方程结合矩量法[3]以数值的方法求解,选择脉冲基函数并采用点匹配,可得到方程组



其中N1表示导体和介质的分界分块数,N~N1表示介质和介质的分界分块数,总共有N个分块。前面N1个方程表示场点所在分块均在导体和介质的分界上,方程式左边的值pm(m=1,2,…,N1)为分块中心点的电位;后面的N-N1个方程表示场点所在分块均在介质和介质的分界,方程左边的值pm(m=N1+1,N1+2,…,N)应为零,方程式右边的分块脉冲基函数αm(m=N1+1,N1+2,…,N)则代表各分块上的全电荷;系数矩阵1mn(m,n=1,2,…,N),由公式(3)表示。

其中m=1,2,…,N1;n=1,2,…,N,x′及y′为源点直角坐标。

假设导体数量为J1,根据分布电容矩阵的定义即式(1),可依次对J1块导体中的每一块赋以单位正电荷,其余导体电位为零,解出式(2),求得各分块的全电荷,然后将同一导体上的分块进行组合,可得到各导体上的总全电荷量。将式1和式2联立求解,积分方程数值化为代数方程组后可得到单位长度分布电容参数。分布电感和分布电导可由分布电容推出,其具体求解公式参见文献[3]。


传输线等效时域模型的建立

获得传输线分布参数(即C、L、R、G)后,在传输线上任意微分小段可等效为由电阻RΔz、电容CΔz、电感LΔz和电导GΔz组成的网络。设传输线始端接有内阻Zg的信号源,终端接有阻抗为Z1的负载,如图2所示。设在离传输线终端z处的t时刻电压和电流分别为u(z,t)和i(z,t),而在位置z+Δz处的电压和电流分别为u(z+Δz,t)和i(z+Δz,t)。其等效时域模型为:


图2 传输线系统及微分段的等效图

仿真实验

在一块高速的电路板上,选取D1和D2数据线并行电路结构(如图3)。接收端为Intel公司提供的器件PetiumPRO66MHz(CPU)的GTL_IO瞬态行为模型(IBIS模型),驱动端为Intel公司提供的器件Intel440FX的PMC_B06120B0S2AZZGBE瞬态行为模型,电路板上的互连线采用带状线形式,具有以下参数;两导体间距S=5mil(1mil=1/1000inch),导体宽度W=5mil,导体厚度为T=0.2mil,介质层的材料为FR-4,D1厚度为10mil,介电常数εr为4.5,另一介质层为大气,D2厚度为0,介电常数εr为0,带状线长度500mil,其横截面图4所示电路。


图3 传输高速信号D1和D2数据线并行电路结构


图4 D1、D2导线对称双微带线截面图

采用全电荷格林函数法结合矩量法提取单位长电容参数,计算结果如下表:


表1 双导体微带线分布电容参数计算结果pF/m

然后通过传输线等效时域模型的建立,进行计算机仿真,经过参数提取后等效如图5所示。


图5 D1、D2信号传输线等效模型拓扑图(Msv为走线间互感)

采用频率为66MHz的脉冲输入信号,分别从AD1、AD2端口输入,观察D1端口接收到的单脉冲信号,它不仅受到传输线TRACE1(AD1和D1连线)自分布参数的影响,同时受到传输线TRACE2(AD2和D2连线)的互分布参数影响,用MATLAB编程可绘出接收端D1仿真波形如图6所示,在图7中给出的是Cadence公司的Specctraquest软件产生的接收端D1的仿真波形。比较图6和图7,可以发现两种仿真波形基本一致。然而在相同计算量的条件下,采用本文的方法进行仿真的时间只有Specctraquest软件仿真时间的3/5。


图6 接收端D1利用分布参数和传输线微分模型算法得到的仿真波形


图7 接收端D1用Cadence公司的Specctraquest软件产生的仿真波形

结论

在高速PCB设计中,不用仿真而只凭传统设计方法或经验很难预测和保证信号的完整性,仿真已成为高速信号设计的必要手段。本文采用全电荷格林函数法结合矩量法对传输线提取分布参数,建立等效时域网络模型,应用端接I/O缓冲器的IBIS瞬态行为模型,对实际传输高速信号的传输线进行仿真,在仿真效率提高了近一倍的情况下,其结果与Specctraquest软件仿真结果相吻合。



参考文献:

[1].PCBdatasheethttp://www.dzsc.com/datasheet/PCB_1201640.html.


来源:0次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭