电源和接地在电磁兼容中的干扰分析
扫描二维码
随时随地手机看文章
随着电子技术的飞速发展,电子产品越来越来越趋向高速、宽带、高灵敏度、高密集度和小型化,这种趋势导致了电路板设计中电磁兼容(EMC)问题的严重化,特别是电源和地线的电磁干扰(EMI)问题,成为目前电磁兼容设计中急待解决的技术难题和系统工程。
1.电源和接地在电磁兼容中的影响
电磁兼容性是指设备或者是系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁干扰的能力。电磁兼容包括干扰源、耦合通路和敏感体三要素。随着数字时代电子产品的发展,特别是高速设计中,数字电路使电子产品的电磁辐射加重,同时,信号线之间的串扰问题和电容耦合也大大增加。这种干扰主要是由于电源电网噪声的污染以及地线存在阻抗不匹配造成的,包括来自变压器的电源噪声、电源总线电压瞬变造成的电磁辐射、接地系统偏离零电位过大造成的干扰电压、传输线路始端和终端的地线噪声等。因此,在数字电子设备的抗干扰对策上,电源噪声和接地阻抗成为电磁干扰主要的研究对象,合理进行电源和地线的设计和布局成为解决EMC问题的关键途径。
2.电源和接地在电磁兼容中的干扰分析
2.1电源干扰分析
由于电子电路通过电源电路接到电网,所以电网的噪声可以通过电源电路干扰电子线路。在电路板设计中,由电源造成的电磁兼容问题主要是电源噪声,主要表现在下面三个方面:
(1)众多的电子产品大量应用数字器件、模拟器件及数字模拟混合器件,如DSP芯片、CPU、动态RAM、D/A变换器和其他数字逻辑器件等,它们工作时会引起电路板内电源电压和地电平波动,导致信号波形产生尖峰过冲或衰减震荡,造成IC电路的噪声容限下降,从而引起误动作。
(2)大部分电子电路的供电系统是采用交流变压→整流→滤波→稳压得到,因此变压器的耦合成为电源噪声传播的主要途径。变压器的初次级线圈存在分布电容,通常达几百pF,对高频噪声有很低的阻抗,电网高频尖峰脉冲能够穿越变压器而产生电源噪声。
(3)由于输电线存在电阻,当电源过压、欠压、断电等故障均能产生噪声干扰,这些干扰常常是缓慢变化,称为电源的慢变化干扰。
2.2地线干扰分析
地线不仅作为电位基准点的等电位点,还可以作为信号的低阻抗回路。它的电位并不是恒定的,地线上最常见的干扰就是地环路电流导致的地环路干扰.
(1)地线电磁干扰
地线的实质是信号回流源的低阻抗路径。由于地线的阻抗不为零,引起地线各点电位差的形成,从而造成电路的误动作,形成地线干扰。而地线阻抗主要是由导线的电感引起的,频率越高,阻抗越大,这也是造成电磁干扰的主要因素。因此,减少这些干扰重点在于尽可能减小地线的阻抗,对于数字电路尤为重要。
(2)地环路干扰
由于地线阻抗的存在,当大电流流过地线时,会产生很大地电位差。如图1,两大功率电器由于电路的不平衡性,每根导线电流不同,形成差模电压,构成环路干扰。这种干扰主要是由电缆与地线构成的环路电流产生的,称为地环路干扰。
图1 图2
(3)公共阻抗干扰
当多个电路共用一段地线时,由于地线阻抗的影响,一个电路的地电位会受另一个电路工作电流的限制,同时,一个电路的信号也会耦合进入另一个电路,形成公共阻抗干扰。如图2所示。
3.电磁兼容设计的处理对策
由于电磁干扰主要是由电源线和地线的阻抗和分布电感引起的,按照Er=IR和EL=L(dI/dt),电流的变化率越快,分布电感产生的感应电压就越大。在高速电路板设计中,由于时钟频率很高,而且电流的变化很快,所以“dI/dt”很大,电磁干扰问题就更加明显和突出。
3.1电源线的电磁兼容设计处理
(1)根据印制板电流的大小,尽量加大电源线宽度,减少环路电阻,同时,使电源线、地线的走向和数据传递的方向一致,有助于增强抗噪声能力。
(2)尽量选用贴片元件,缩短引脚长度,减少去耦电容供电回路面积,减少元件分布电感的影响,有利于实现电磁兼容。
(3)在电源变压器前端加装电源滤波器,抑制共模噪声和串模噪声,隔离外部和内部脉冲噪声的干扰。
(4)印制电路板的供电线路应加上滤波器和去耦电容。在板的电源引入端加上较大容量的电解电容作低频滤波,再并联一只容量较小的瓷片电容作高频滤波。
(5)不要把模拟电源和数字电源重叠放置,避免产生耦合电容,造成相互干扰。
3.2地线的电磁兼容设计处理
(1)为了减少地环路干扰,必须想办法消除环路电流的形成,具体可以采用光隔离器、变压器、共模扼流圈切断地环路电流的形成或者采用平衡电路消除环路电流等。
(2)为了消除公共阻抗的耦合,可减小公共地线部分的阻抗,加粗地线或对地铺铜处理;另一方面可以通过适当的接地方式避免相互干扰,比如并联单点接地(图3)或串并联混合单点接地(图4),彻底消除公共阻抗。
图3 并联单点接地 图4串并联混合单点接地
(3)数字地和模拟地要分开,并单独设置模拟地和数字地。低频电路为防止串扰,地线应尽量采用单点并联接地,高频电路宜采用多点串联接地,地线要短而粗,高频元件周围尽量用栅格状大面积铺铜加以屏蔽。
(4)对于多层板,应专门设置地线层。
(5)印制板导线的电感与长度和长度的对数成正比,与宽度的对数成反比,为减少地线的电感,应尽量减小导线的长度。
4.结束语
电源和地线的干扰问题是电磁兼容设计中必须慎重考虑并解决的关键一环,它与电路板的性能有着密切的联系,但它只是电磁兼容设计中的一部分,在EMC设计中,还要考虑反射噪声、串扰噪声、辐射发射噪声、退耦电容、元件布局和其他工艺技术问题等因素的影响和干扰。通常,采用以上的抗干扰措施,可大大地消除电源和地线的电磁干扰,但过多的采用抗干扰措施,也会产生新的干扰,导致系统成本的增加,系统可靠性下降。所以应根据设计条件和目标要求,合理采用抗EMI措施,设计出具备良好EMC性能的电路板。