当前位置:首页 > 工业控制 > 电子设计自动化

摘 要: 提出了一种基于循环前缀的符号同步算法。此算法在最大似然估计的基础上加以改进,简化了符号同步中相关运算的判决方法,在保持同步效率的同时,极大地节约了硬件资源,使算法更易于硬件实现。改进算法基于IEEE 802.11a的标准提出,通过Matlab仿真分析其性能,并在FPGA硬件平台上实现,利用ChipScope观测得到波形。实验结果表明,电路系统工作可靠,满足设计要求。
关键词: OFDM; 循环前缀; 同步; FPGA

OFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用技术,实际上是多载波调制的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。
信号在无线信道中传输时,会受到多径衰落、时延扩展、多普勒频移等现象的影响,破坏子载波的正交性。系统接收端会因定时不准确导致FFT处理窗包含连续两个OFDM信号,引入数据误差造成符号间干扰(ISI)。因此,符号同步显得尤为重要。同步的定时和频偏估计算法通常分为两类:第一类为数据辅助估计[1],即基于导频或训练序列的同步算法,第二类是非数据辅助估计[2-3],即利用数据自身的冗余性进行同步计算。本文提出了一种基于循环前缀的非数据辅助估计算法。
1系统模型
1.1 IEEE802.11a的基带系统模型
IEEE802.11a基带系统收发机各功能模块如图1所示,其中上半部分对应于发射机链路,下半部分对应于接收机链路。系统可采用BPSK、QPSK、16QAM和64 QAM四种调制类型以及1/2 、2/3和3/4三种编码速率分别来支持6 Mb/s~54 Mb/s的数据速率。一个OFDM符号中包含48个映射后的复数数据,4个导频信息以及12个零点,因此该系统采用64点IFFT和FFT运算,为了克服符号间干扰,在每个OFDM符号前加入16点的保护前缀[4]。

1.2 OFDM符号结构
在OFDM中,基带带宽由N个子载波占用,符号速率为单载波传输模式的1/N,正是因为这种低符号速率,可以使OFDM系统抵抗多径信道导致的ISI。另外,通过在每个OFDM符号前加入保护前缀可以进一步抵抗符号间干扰,即将每个OFDM符号后时间中的样点复制到OFDM符号的前面,形成前缀,在增加符号长度的同时,也维持了子载波的正交性。OFDM符号结构如图2所示。

2 符号定时同步
2.1 OFDM信号和信道模型
在OFDM系统中,传输的N个复数信号经过串并转换和IFFT后,被调制到N路子载波上,其中每个OFDM符号后的L个样值被复制到符号前作为循环前缀,基带信号s(n)表示如下[4]:

2.2 改进算法的定时估计
在多径衰落信道中,最大似然定时估计算法可以表示为[5]:

由于循环前缀的长度为L,可分别计算L个点的实部Re{rdif(n)}和虚部Im{rdif(n)}的总值:

3 算法仿真与分析
  用Matlab对上述两种算法进行仿真分析并进行对比。主要仿真参数按照IEEE802.11a的标准设定如下:子载波采用BPSK调制方式,进行64点的FFT运算,循环前缀的点数为16,总子载波数为52,其中数据子载波数为48。
  图3(a)是根据最大似然估计算法,在SNR=10 dB的高斯信道中进行仿真得到的图形。仿真中,通过观测归一化后OFDM估计的峰值,获得最大似然估计的定时同步点。图3(b)则是在相同的环境下对改进算法进行仿真得到的结果。算法中通过检测输出峰值,可以较理想地确定符号同步的位置。从图中可以看出,改进算法可得到较明显的同步定位点。

再从均方误差(MSE)的角度比较两种算法,结果如图4所示。从图中可以看出,两者曲线的走势相近。从同步性能来看,两者不相上下,但由于所提出算法的硬件实现成本比最大似然估计算法低很多,因此所提出算法相对较好。

4 FPGA实现
本设计采用Xilinx公司Virtex 2p系列器件实现各模块构建。改进算法在ISE10.1开发软件下编译通过,并在Modelsim环境下仿真,最后运用ChipScope进行在线逻辑分析并得出结果。
符号同步系统框图如图5所示,信号先经过64个时钟的延时,再与当前的数据相减并取模。硬件上充分利用FPGA中资源,构成32个并行减法器(实部虚部各16个),然后32组数据取模后相加,再依次调用FPGA中除法器以及乘法器的IP核进行求倒和平方运算,最后设定判决门限对同步点进行判决。

本设计用FPGA模拟了无线信道中10 dB的信噪比,如图6所示;观测改进算法的同步定时估计值如图7所示。两图均用ChipScope进行在线逻辑观测。从图7中可以看出,估计值出现的尖锐的峰值处就是同步的定位点。可通过设定合理的判决门限,使得OFDM符号同步达到较高的准确率。由生成报表可知,该设计使用触发器个数为2 379,占总资源的8%;LUT的个数为1 473,占总资源的5%。综上可知,实验结果正确、设计可行。

OFDM技术预计将成为3 G以后主流的移动通信技术。本文主要针对OFDM系统符号定时,提出了一种非数据辅助型的同步估计算法,利用循环前缀的冗余性,对数据样值的末端和循环前缀进行相关运算来纠正符号同步误差。文中推导了改进的相关算法,并和最大似然估计相比较,进行Matlab仿真验证并且在硬件上用FPGA成功实现。
参考文献
[1] SCHMIDL T M, COX D C. Robust frequency and timing synchronization for OFDM [C].IEEE Transactions on Communications,1997,45(12):1613-1621.
[2] HSIEH M H, WEI Che Ho. A lowcomplexity frame synchronization and frequency offset compensation scheme for OFDM systems over fading channels. Vehicular Technology[C]. IEEE Transactions on.1999,48(5):1596-1609.
[3] ZHENG Hua Rong, TANG Jue,SHEN Bo.Low-complexity joint synchronization of symbol timing and carrier frequency for OFDM systems [C]. Consumer Electronics,IEEE Transactions on. 2005,51(3):783-789.
[4] 王文博, 郑侃.宽带无线通信OFDM技术 [M].北京:人民邮电出版社,2007:1-39.
[5] LEE J L, TOUMPAKARIS H D. Maximum likelihood estimation of time and frequency offset for OFDM systems[C]. Electronics Letters Volume:40 Issue:22 Date:28 Oct. 2004,40(22):1428-1429.

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭