基于DSP和FPGA的多相变频控制器的设计与实现
扫描二维码
随时随地手机看文章
摘 要: 为了解决多相变频控制系统驱动信号多、对实时性要求高的问题,设计了一种基于DSP和FPGA的多相变频控制器。提出一种利用三相PWM信号产生单元构建多相PWM发生器的设计方法。该多相变频控制器可以对任意相数、任意调制波波形进行在线设置及多种控制方法的选择。实验结果证明了该多相变频控制器具有通用、灵活、可靠的特点。
关键词: 多相变频控制器;脉冲宽度调制;数字信号处理器;现场可编程门阵列
在电机驱动系统应用中,多相电机驱动系统可以应用在供电电压受限制的场合,其作用是:(1)解决低压大功率的问题;(2)减小振动和噪音。由于电机相数增加,输出转矩脉动减小、脉动频率增加,使驱动系统低速特性得到很大的改善;(3)提高可靠性。由于相数冗余,当多相电机驱动系统中有一相甚至几相发生故障时,电机仍可运行。因此,多相电机驱动系统特别适合于高可靠性要求的场合,多相系统的这些优点引起学术界和工程界的广泛关注。由于多相系统采用的开关器件多,控制系统复杂,所以对多相系统控制器的性能要求较高[1-3]。
在三相变频控制系统中,虽然DSP控制算法结构复杂,但运算速度高、寻址方式灵活和通信性能强大等特点,已经得到了广泛应用。而对于多相变频控制系统,还要求控制器的实时性能高、能够处理大量数据,并且要有更多接口用于PWM驱动信号,而这些要求FPGA都能满足。
因此,本文在三相PWM信号产生方法的基础上,提出一种基于DSP和FPGA的多相PWM信号的产生方法。采用这种方法设计了多相变频控制器,其具有一定的通用性,可以通过上位机软件对相数、调制波波形和控制方法进行在线设置。
1 多相变频控制器设计思想
多相变频控制器的通用性表现在:(1)多相电机的相数可选;(2)载波频率可选;(3)根据谐波注入的需要,可选择不同调制波;(4)依据电机连接方式,可选择不同的控制方法。
为了实现上述功能,本文采用模块化的方法对控制器结构进行了设计,控制器由上位机、DSP和FPGA三部分构成,其总体结构框图如图1所示。
上位机的操作软件由面向对象的软件实现。从控制面板上可以控制电机运行、停止,并且可对电机相数、载波频率、调制波波形、死区时间等进行设置。
为了最大限度地发挥DSP和FPGA各自的优势,由DSP主要实现控制算法、采集反馈信号及与上位机进行通信;由FPGA实现调制算法,产生多相PWM信号,这部分占用硬件资源多,而且对实时性要求高。
控制过程如下:
(1)上位机与DSP通过串行接口相连,在需要动作时向DSP发出指令。
(2)DSP根据接收到的指令调用相关函数,如对系统进行初始化、运行相应的控制算法、进行信号采集等。
(3)通过DSP与FPGA并行通信,DSP对FPGA进行调制算法的初始化并解除PWM封锁,FPGA根据接收到的频率和幅值进行计算,产生PWM信号。
2 多相PWM波形产生
2.1 SPWM波形产生原理
正弦脉宽调制(SPWM)的产生原理如图2所示。用一组等腰三角形波与一个正弦波比较,其交点作为SPWM波的上升或下降时刻。当正弦波幅值大于三角波幅值时,输出为高电平;当正弦波的幅值小于三角波的幅值时,输出为低电平[4]。
利用FPGA生成SPWM的基本原理是将三角波发生器产生的数字信号与存储在ROM中的正弦波信号相比较,根据两者的大小来决定SPWM波的输出。
2.2 多相PWM波形产生
图3给出了三相SPWM信号的产生方法。序列发生器的作用是按顺序产生A相、B相、C相的时钟信号;地址合成与数据分离利用了分时复用的原理,目的是为了减少ROM的使用数量。多相正弦波只需一个ROM即可,也为外挂ROM创造了条件[5]。