当前位置:首页 > 单片机 > 单片机
[导读]利用DSP和CPLD来设计宽带信号源,将DSP软件控制上的灵活性和CPLD硬件上的高速、高集成度和可编程性有机地结合起来,一方面使得信号源控制简单、可靠,同时保证产生的信号高速、准确。

  摘要:利用DSPCPLD来设计宽带信号源,将DSP软件控制上的灵活性和CPLD硬件上的高速、高集成度和可编程性有机地结合起来,一方面使得信号源控制简单、可靠,同时保证产生的信号高速、准确。
 
  关键词:DSP,CPLD,宽带信号

  1 引言

  信号源是雷达系统的重要组成部分。雷达系统常常要求信号源稳定、可靠、易于实现、具有预失真功能,信号的产生及信号参数的改变简单、灵活。本文采用DSP和CPLD来设计信号源的控制部分,一方面能利用DSP软件控制的灵活性,另一方面又能利用CPLD硬件上的高速、高集成度和可编程性。使用这种方法可以充分利用软件支持来生成和加载任意波形数据,并能方便地实现对信号参数的控制和对波形数据的随意修改,同时又能保证信号产生的高速、灵活可控。

  

  2 系统结构

  采用波形存储直读法,即通过对存储的波形采样数据进行数模变换,直接生成模拟信号的一种方法。图1为信号源的系统结构。本信号源可工作于联机和脱机两种方式。联机工作时,波形数据从微机加载,由DSP控制,通过CPLD内的数据通道写入SRAM,经回读、校验后,从SRAM内高速送入到数/模转换器件产生雷达信号。脱机工作时,波形数据可在系统上电时由EEPROM加载,EEPROM中可存放一组波形数据,也可存储多组数据以方便应用。

  3 硬件实现

  3.1 TMS320F206与EEPROM的接口设计

  在实际系统中,DSP采用TI公司的TMS320F206芯片,EEPROM采用Microchip公司的24LC256 CMOS串行EEPROM(图2)。TMS320F206属于定点、静态CMOS数字信号处理器。它采用先进的哈佛结构,具有片内外设、片内存储器及专用的运算指令集,这些特点使得此器件使用灵活方便。24LC256工作电压为2.5V~5.5V,容量为32K×8bit,为两线串行接口总线,标准与I2CTM兼容。SCL为24LC256的时钟输入管脚,SDA为其串行地址/数据输入/数据输出管脚。24LC256提供读顺序地址内容的操作方式,其内部的地址指针在每次读操作完成之后加1,此地址指针允许在一次读操作期间,连续顺序地读出整个存储器的内容。其时序如图3所示。

  

  

 设计中将TMS320F206的通用I/O端口IO2模拟出SCL的时钟,IO3负责将数据写入和从24LC256读出(TMS320F206与24LC256的接口如图1所示)。脱机工作时,其流程如图4。

  3.2 CPLD设计

  可编程逻辑器件采用XILINX公司的CPLD,型号为XC95288XL-6TQ144C。该器件为144-pin TQFP封装,内部有288个宏单元,最高工作时钟为151MHz。XC95288XL内部逻辑分为三部分:TMS320F206与微机接口的通信、高速地址计数、SRAM片选读写信号的产生。

  3.2.1 TMS320F206经过CPLD与微机接口的通信

  TMS320F206与微机接口的通信采用并行接口协议(EPP),主要完成从微机加载数据到SRAM、将数据从SRAM回读到微机,整个过程对于并行接口来说采用查询方式,对于TMS320F206来说采用中断方式。TMS320F206使用    引脚接收由CPLD发出的中断,通过设置TMS320F206片内寄存器IRM与ICR,使TMS320F206响应中断 而不响应 。其时序如图5和6所示。

  

  

  

  脱机工作状态下,从并口加载数据时,微机将数据发送到并口,并发出低脉冲,CPLD接收STB到后,置BUSY=1,发出中断信号,TMS320F206接收到中断后,控制CPLD锁存数据,并将数据写入SRAM,置BUSY=0;从并口回读数据时,微机设置并口为输入状态,然后发出AUTOFEEDXT低脉冲,CPLD接收到后,置=1,发出中断信号给TMS320F206,TMS320F206控制CPLD从SRAM读取数据并送到并口,置=0。

  3.2.2 高速地址计数器设计

  信号源中SRAM在产生雷达波形时工作在100MHz的高速时钟下,这就要求设计的地址计数器也工作在100MHz的时钟下。在同步计数器中,采用超前进位(prescalar)技术来提高其性能,即将前端的、高速计数器的超前输出作为后面的低速计数器的计数使能。实现时我们利用XILINX公司的EDA软件中提供的高效宏单元CLBMAP优化布线,从而使计数器内部延时最小。图7为计数器输出Q0~Q6的仿真结果。实验表明,上述措施对于提高同步计数器的速度非常有效。

  

  3.2.3 SRAM片选读写信号的产生

  波形存储单元由两片高速、低功耗,容量为128K×18bit的静态双口SRAM构成。该器件支持单次读写、流水线读写、触发式读写等多种方式,既可对同一地址单元的高低字节分别读写,也可同时操作。因此片选读写信号时序十分复杂。

  本设计中SRAM片选读写信号直接由TMS320F206由数据线送入到CPLD,而不必由CPLD内部经过复杂的译码逻辑电路产生,由此可见DSP+CPLD设计的简单。由于高速读出波形数据送入D/A是在高速时钟(100MHz)下进行,因此高速读出时,片选读信号一直有效。而在写入时,由于会有较长时间不对SRAM进行操作,为避免因时钟信号线上的毛刺而写入错误数据,因此在写入SRAM时,片选写信号只在写入的单个时钟周期有效。

  

  

  4 TMS320F206软件设计

  信号源有联机和脱机两种工作方式,PCB板上有一个模式选择开关,TMS320F206通过I/O端口IO1检测工作模式。TMS320F206控制程序首先使TMS320F206初始化,设置各个片内寄存器。然后根据IO1的值决定从EEPROM加载还是从微机加载。程序流程略。

  5 实验结果

  用示波器对信号源所产生结果进行测试,其结果如图8和图9所示,图8为产生的正弦波和锯齿波波形,图9为脱机模式下产生的线性调频信号的基带波形,其时宽为25μs,基带带宽为37.5MHz,经过4倍频后,带宽能达到300MHz。

  实验结果表明,运用DSPCPLD来设计信号源的控制部分有很大的优越性,系统灵活可调、性能稳定,复杂的控制用软件实现简单,系统的高速特性也得到满足。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭