当前位置:首页 > 单片机 > 单片机
[导读]0 引 言 随着科技的迅猛发展,世界自然资源也以同样的迅猛速度消耗着,节能已经成为各国科研计划中的重要项目。照明节能越来越引起人们的关注,并逐渐上升到保护资源和环境的高度。近年来,得益于电力电子学的


0 引 言
    随着科技的迅猛发展,世界自然资源也以同样的迅猛速度消耗着,节能已经成为各国科研计划中的重要项目。照明节能越来越引起人们的关注,并逐渐上升到保护资源和环境的高度。近年来,得益于电力电子学的发展,节能型电光源配套设备也得到了迅速发展。与传统的电感镇流器相比,电子镇流器自身能耗大为降低,性能参数大大提高,体积和重量大大减小,使用寿命延长,并且改善了照明质量。
    金卤灯作为一种新型节能高强度放电灯,其显色性好,光色接近于太阳光,而且发光效率高,广泛应用于广场、码头、车间等室内外照明中。因此,与其配套的电子镇流器也成为近几年研究的热点。降低金卤灯及电子镇流器的成本,缩小其体积则成为研究的关键。


1 硬件电路设计
1.1 金卤灯电子镇流器技术指标
    功率因数大于等95%;电流畸变系数小于等于10%;电流波峰系数小于等于1.7;使用寿命大于等于10 000 h;启动时间小于等于1 min;有过压、过流及异常状态保护功能。
1.2 电子镇流器的工作原理
    该电子镇流器的基本结构框图如图1所示,它主要由整流及功率因数校正电路、恒功率控制电路、高频逆变电路、点火电路及控制电路几部分构成。该电路的输入为50/60 Hz,220 V的工频交流电,在电源接通而灯未点燃时,经LC谐振电路谐振后能产生3 kV以上的高压把灯点亮;而灯稳定工作以后,灯两端电压约为85 V,维持金卤灯的正常点燃。

1.2.1 整流与功率因数校正电路
    本电路的整流滤波是采用桥式整流电容滤波电路来实现的,通过EMI滤波器得到310 V的直流电压送到APFC电路。而APFC是用功率因数控制芯片L6561完成的。其电路图如图2所示。

    APFC的基本工作原理如下:主回路的输出电压Vo。和基准电压VREF比较后,输入给电压误差放大器EA,整流电压检测值VM1和误差放大器的输出电压信号Verr共同加到乘法器M的输入端,乘法器M的输出作为电流反馈控制的基准信号。电流误差放大器CA的输出与电感零电流检测器(ZCD)的输出作为开关管VG驱动器的输入信号,控制开关管的开通和关断,保证电感电流的峰值跟踪整流电压,从而使输入电流(电感电流的平均值)与输入电压的波形基本一致,提高输入端功率因数,降低电流畸变程度。
1.2.2 恒功率控制电路
    金卤灯在使用寿命期间,灯电压会随着灯管的不断老化而升高,而传统的电感镇流器具有恒流特性,导致灯功率不断增大,从而加速灯管老化。本文采用了具有限流限压功能的近似恒功率控制方案,具有成本低,性能稳定的特点,在电网电压波动以及灯管老化等因素造成灯电压变化时,均能自动实现恒功率输出。其电路原理图如图3所示。

    该电路可以将系统的功率因数λ提高到0.99以上,有效地抑制输入电源电流iin的波形失真,达到GB15144所要求的低于L级畸变指数,确保HID灯管的电流波峰系数小于1.7。
    在Buck电路输入端串联接入检测电阻Rs,然后通过电阻R1进行滤波,得到平均电压信号,从L2端检测到灯的电压信号,二者经过EA放大电压信号,得到的输出电压作为反馈信号经过比较强输入到PWM控制器,PWM控制器根据输入的反馈电压信号输出一个控制信号Vf来控制Buck电路的开关S2的占空比。适当地选择R1,R2,R3,就可以很好地控制输出功率Po。
1.2.3 全桥逆变电路
    镇流器中的低频方波输出是通过全桥逆变电路来实现的,如图4所示。全桥由4个MOSFET构成,在全桥控制器的控制下,两对MOS管交替导通,在稳定工作情况下输出400 Hz的方波。

1.2.4 启动电路
    由LC构成谐振启动电路。在启动前,灯相当于开路,L,C组成串联谐振电路。点灯时,利用全桥输出方波电压正负跳变时的少量高频分量,使L,C发生谐振,在C两端产生高电压将灯点燃。此启动电路点火电压的位置有利于灯启动后电弧的稳定,而当灯工作于稳态时,点火电路对灯并无影响。


2 软件设计
    单片机主要完成灯启动过程控制、稳态时的恒功率控制以及过压欠压和开路、短路等异常状态保护。其主程序流程如图5所示。

3 实验结果
    电路有关工作波形如图6所示。


4 结 语
    基于单片机控制的金卤灯电子镇流器,能自动完成故障检测、高压点火、异常状态保护及稳态时的恒功率控制。所设计的电子镇流器通过了高温80℃、低温-40℃、异常状态保护及工作时间试验。从研究结果可以看到,样机开发是成功的,这无疑为数字控制电子镇流器早日推向市场打下了良好的基础。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭