当前位置:首页 > 单片机 > 单片机
[导读]摘要:针对新手开车误踩油门而经常产生严重交通事故现象,文章设计由急刹车误踩油门判断电路、单片机控制电路、继电器切断油门及驱动刹车等电路构成的急刹车误踩油门应急系统,能自动识别误踩油门,启动紧急刹车功能

摘要:针对新手开车误踩油门而经常产生严重交通事故现象,文章设计由急刹车误踩油门判断电路、单片机控制电路、继电器切断油门及驱动刹车等电路构成的急刹车误踩油门应急系统,能自动识别误踩油门,启动紧急刹车功能。实验表明系统易于实现并取得较好效果,具有广泛的应用前景。文中概述了系统的硬软件设计与具体实现方法。
关键词:急刹车;误踩油门;单片机;继电器;驱动电路

0 概述
   
目前我国每天考取汽车牌照的人数以万计,其中有不少人在考取车牌后隔离相当长的一段时间才开始驾车, 这样的新手,技术不熟练,当开车遇到紧急情况时,如:遇到行人、障碍物或快速迎面而来的汽车时,慌乱中,经常会误把油门当成刹车踩,使车突然加速,造成车损人亡的严重交通事故。还有一部分酒醉驾驶人员,意识模糊,很容易误把油门当成刹车踩,从而产生交通事故惨剧。
    本文提出的急刹车误踩油门应急系统是由急刹车误踩油门判断电路、单片机控制电路、继电器切断油门及驱动刹车等硬件电路,配以相应的软件控制,以识别误踩油门,实现紧急驱动刹车功能,避免恶性事故发生。

1 系统结构及工作原理
   
本系统主要由急刹车误踩油门判断电路、单片机控制电路、继电器切断油门、驱动刹车并发出警告和数码显示及电源电路等四部分构成。系统组成方框图如图1所示。


1.1 急刹车误踩油门判断电路
   
急刹车误踩油门判断电路由电磁感应器、单片机ATmega8芯片中A/D转换功能电路组成。当踩油门时,与油门相连的电磁感应器由于电磁感应产生感应信号,通过单片机ATmega8芯片中A/D转换为数字电压信号,设定正常加速时踩油门产生经A/D转换得到的最大数字电压值的1.2倍作为单片机ATmega8芯片程序电压基准值,若检测到的电压大于基准值,则判断为误踩油门,反之为正常踩油门加速,从而实现判断误踩油门功能。同时由于在紧急刹车情况下,踩刹车的速度与力度相对每个人都有所不同,所以在本设计中基准电压值可人工调节,以适应更多的人群使用。

2 单片机控制及各功能输出电路
   
系统中采用的单片机是ATMEL公司生产的基于增强型AVRRISC结构的低功耗8位CMOS微控制ATmega8。
    该单片机具有如下特点:8k字节的系统内可编程Flash(具有同时读写的能力,即RWW),512字节EEPROM,1k字节SRAM,32个通用I/O口线,32个通用工作寄存器,三个具有比较模式的灵活的定时器/计数(T/C),片内/外中断,可编程USART,面向字节的两线串行接口,10位6路(8路为TQFP与MLF封装)ADC,具有片内振荡器的可编程看门狗定时器,一个SPI串行端口,以及五种可以通过软件进行选择的省电模式。工作于空闲模式CPU停止工作,而SRAM、T/C、SPI端口以及中断系统继续工作;掉电模式时晶体振荡器停止振荡,所有功能除了中断和硬件复位之外都停止工作;在省电模式下,异步定时器继续运行,允许用户保持一个时间基准,而其余功能模块处于休眠状态;ADC噪声抑制模式时终止CPU和除了异步定时器与ADC以外所有I/O模块的工作,以降低ADC转换时的开关噪声;Standby模式下只有晶体或谐振振荡器运行,其余功能模块处于休眠状态,使得器件只消耗极少的电流,同时具有快速启动能力。
    单片机控制电路原理如图2所示。


    图中当踩动油门时,电磁感应器产生的模拟电压由ATmega8的PC0脚输入,利用ATmega8内部的ADC转换为数字电压,再与单片机EEPROM内预先设定的基准电压进行对比,当该电压超过基准电压时,表示误踩油门,分别由PD0、PD1脚输出的比较电压经驱动电路90141、90142放大后由驱动继电器JR2、JR1驱动,从而断开油门,启动刹车系统功能,同时由PD3、PD2输出信号并启动蜂鸣器和红色LED灯作警告提示。

2 系统软件的设计
2.1 急刹车误踩油门判断软件设计
   
利用ATmega8的A/D功能提取电压值,定义3V为判断基准初始值电压存放在单片机的EEPROM内,当电压值超过基准值后,执行刹车功能,2s后自动恢复正常工作。急刹车误踩油门判断软件流程图如图3所示。


2.2 按键部分软件设计
   
按键部分程序采用状态机方式查询。由于按键的检测过程需要进行消抖处理,因此取状态机的时间序列周期约为10ms。图4给出了一个简单按键盘状态机转换流程图。图中将一次按键完整的操作过程分解为三个状态,采用时间序列周期约为10ms。


    其中功能按键包括按键1、按键2、按键3等共三个按键。
    按键1:工作模式切换按键。按按键1时间长约2s,则系统由正常工作状态进入基准调节模式。
    按键2:电压基准增加按键。按键在基准调节模式下才有效,此时,每按一下按健2基准电压升高。
    按键3:电压基准减小按键。按键在基准调节模式下才有效,此时,每按一下按健2基准电压降低。

3 系统测试实验
3.1 急刹车判断测试实验
   
把急刹车误踩油门检测设备输出电压连接到示波器输入端,调节示波器的各个档位到适合位置,用不同的速度踩油门设备,测试输出电压值,如表1所示。


3.2 按键控制电路测试实验
   
测试与按键次数对应的稳压电源电压,基准电压数据如表2所示。


    由表2知:稳压电源电压、基准电压误差约为0.2V。
3.3 单片机控制电路的测试实验
   
首先在PC机上进行仿真调试,单片机控制仿真电路图如图5所示。


    图中增加了一个4位数码管显示,和一个电位器以改变电压值,电位器的电压值在数码管里显示出来,说明AD功能正常。
    然后进行按键控制仿真调试,仿真调试电路如图6所示。


    D5为红灯,D5亮时为基准调节模式。D6为绿灯,D6亮时为正常工作模式。当按下按键1时间长约2s时,红灯亮,此时再按一下按键2,然后上下调节电位器,使绿光亮,第二次、第三次重复以上操作可以发现,最终绿光亮时,所调节的电位器中心抽头位置越来越高;同理,按一下按键3,调节电位器,使绿光亮,第二次、第三次重复以上操作可以发现,最终绿光亮时,所调节的电位器中心抽头位置越来越低。以上仿真测试实验说明单片机控制电路包括按健控制电路工作正常。
3.4 系统整体测试实验
   
接通电路板稳压电源进行系统整体测试实验,实验按正常工作模式、基准调节模式两种方式。测试结果如下:
    (1)正常工作模式。用不同的速度踩动油门踏板,当超过所设定的速度时,即达到误踩时油门速度的基准值,此时系统能驱动继电器切断电机电路,同时启动蜂鸣器和红色LED灯作警告提示,并且2s后系统自动恢复正常状态。
    (2)基准调节模式。在基准调节模式状态下,按按键2(加),用不同的速度踩动油门踏板,可以发现,当增加按键次数,绿灯亮时(即转为正常工作状态)所需踩动油门踏板的速度要越来越大;同理按按键3(减),用不同的速度踩动油门踏板,可以发现,当不断增加按键次数,绿灯亮时(即转为正常工作状态)所需踩动油门踏板的速度要越来越小,整个过程数码管均能显示基准调节模式调节时各次不同的基准值。

4 结论
   
本文设计的由急刹车误踩油门判断电路、单片机控制电路、继电器切断油门及驱动刹车等电路构成的急刹车误踩油门应急系统,实验证明能自动识别误踩油门,启动紧急刹车和报警功能,避免恶性交通事故的发生,具有广泛的市场应用前景。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭