当前位置:首页 > 单片机 > 单片机
[导读] 对芯片内部flash进行操作的函数,包括读取,状态,擦除,写入等等,可以允许程序去操作flash上的数据。基础应用1,FLASH时序延迟几个周期,等待总线同步操作。推荐按照单片机系统运行频率,0—24MHz时,

 

对芯片内部flash进行操作的函数,包括读取,状态,擦除,写入等等,可以允许程序去操作flash上的数据。

基础应用1,FLASH时序延迟几个周期,等待总线同步操作。推荐按照单片机系统运行频率,0—24MHz时,取Latency=0;24—48MHz时,取Latency=1;48~72MHz时,取Latency=2。所有程序中必须的

用法:FLASH_SetLatency(FLASH_Latency_2);

位置:RCC初始化子函数里面,时钟起振之后。

基础应用2,开启FLASH预读缓冲功能,加速FLASH的读取。所有程序中必须的

用法:FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

位置:RCC初始化子函数里面,时钟起振之后。

3、 阅读lib:调试所有外设初始化的函数。

我的理解——不理解,也不需要理解。只要知道所有外设在调试的时候,EWRAM需要从这个函数里面获得调试所需信息的地址或者指针之类的信息。

基础应用1,只有一个函数debug。所有程序中必须的。

用法: #ifdef DEBUG

debug();

#endif

位置:main函数开头,声明变量之后。

4、 阅读nvic:系统中断管理。

我的理解——管理系统内部的中断,负责打开和关闭中断。

基础应用1,中断的初始化函数,包括设置中断向量表位置,和开启所需的中断两部分。所有程序中必须的。

用法: void NVIC_Configuration(void)

{

NVIC_InitTypeDef NVIC_InitStructure; //中断管理恢复默认参数

#ifdef VECT_TAB_RAM //如果C/C++ Compiler\Preprocessor\Defined symbols中的定义了VECT_TAB_RAM(见程序库更改内容的表格)

NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0); //则在RAM调试

#else //如果没有定义VECT_TAB_RAM

NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);//则在Flash里调试

#endif //结束判断语句

//以下为中断的开启过程,不是所有程序必须的。

//NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);

//设置NVIC优先级分组,方式。

//注:一共16个优先级,分为抢占式和响应式。两种优先级所占的数量由此代码确定,NVIC_PriorityGroup_x可以是0、1、2、3、4,分别代表抢占优先级有1、2、4、8、16个和响应优先级有16、8、4、2、1个。规定两种优先级的数量后,所有的中断级别必须在其中选择,抢占级别高的会打断其他中断优先执行,而响应级别高的会在其他中断执行完优先执行。

//NVIC_InitStructure.NVIC_IRQChannel = 中断通道名; //开中断,中断名称见函数库

//NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级

//NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应优先级

//NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //启动此通道的中断

//NVIC_Init(&NVIC_InitStructure); //中断初始化

}

5、 阅读rcc:单片机时钟管理。

我的理解——管理外部、内部和外设的时钟,设置、打开和关闭这些时钟。

基础应用1:时钟的初始化函数过程——

用法:void RCC_Configuration(void) //时钟初始化函数

{

ErrorStatus HSEStartUpStatus; //等待时钟的稳定

RCC_DeInit(); //时钟管理重置

RCC_HSEConfig(RCC_HSE_ON); //打开外部晶振

HSEStartUpStatus = RCC_WaitForHSEStartUp(); //等待外部晶振就绪

if (HSEStartUpStatus == SUCCESS)

{

FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

//flash读取缓冲,加速

FLASH_SetLatency(FLASH_Latency_2); //flash操作的延时

RCC_HCLKConfig(RCC_SYSCLK_Div1); //AHB使用系统时钟

RCC_PCLK2Config(RCC_HCLK_Div2); //APB2(高速)为HCLK的一半

RCC_PCLK1Config(RCC_HCLK_Div2); //APB1(低速)为HCLK的一半

//注:AHB主要负责外部存储器时钟。PB2负责AD,I/O,高级TIM,串口1。APB1负责DA,USB,SPI,I2C,CAN,串口2345,普通TIM。

RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); //PLLCLK = 8MHz * 9 = 72 MH

RCC_PLLCmd(ENABLE); //启动PLL

while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET){} //等待PLL启动

RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //将PLL设置为系统时钟源

while (RCC_GetSYSCLKSource() != 0x08){} //等待系统时钟源的启动

}

//RCC_AHBPeriphClockCmd(ABP2设备1 | ABP2设备2 |, ENABLE); //启动AHP设备

//RCC_APB2PeriphClockCmd(ABP2设备1 | ABP2设备2 |, ENABLE);//启动ABP2设备

//RCC_APB1PeriphClockCmd(ABP2设备1 | ABP2设备2 |, ENABLE); //启动ABP1设备

}

6、 阅读exti:外部设备中断函数

我的理解——外部设备通过引脚给出的硬件中断,也可以产生软件中断,19个上升、下降或都触发。EXTI0~EXTI15连接到管脚,EXTI线16连接到PVD(VDD监视),EXTI线17连接到RTC(闹钟),EXTI线18连接到USB(唤醒)。

基础应用1,设定外部中断初始化函数。按需求,不是必须代码。

用法: void EXTI_Configuration(void)

{

EXTI_InitTypeDef EXTI_InitStructure; //外部设备中断恢复默认参数

EXTI_InitStructure.EXTI_Line = 通道1|通道2; //设定所需产生外部中断的通道,一共19个。

EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; //产生中断

EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; //上升下降沿都触发

EXTI_InitStructure.EXTI_LineCmd = ENABLE; //启动中断的接收

EXTI_Init(&EXTI_InitStructure); //外部设备中断启动

}

7、 阅读dma:通过总线而越过CPU读取外设数据

我的理解——通过DMA应用可以加速单片机外设、存储器之间的数据传输,并在传输期间不影响CPU进行其他事情。这对于入门开发基本功能来说没有太大必要,这个内容先行跳过。

8、 阅读systic:系统定时器

我的理解——可以输出和利用系统时钟的计数、状态。

基础应用1,精确计时的延时子函数。推荐使用的代码。

用法:

static vu32 TimingDelay; //全局变量声明

void SysTick_Config(void) //systick初始化函数

{

SysTick_CounterCmd(SysTick_Counter_Disable); //停止系统定时器

SysTick_ITConfig(DISABLE); //停止systick中断

SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); //systick使用HCLK作为时钟源,频率值除以8。

SysTick_SetReload(9000); //重置时间1毫秒(以72MHz为基础计算)

SysTick_ITConfig(ENABLE); //开启systic中断

}

void Delay (u32 nTime) //延迟一毫秒的函数

{

SysTick_CounterCmd(SysTick_Counter_Enable); //systic开始计时

TimingDelay = nTime; //计时长度赋值给递减变量

while(TimingDelay != 0); //检测是否计时完成

SysTick_CounterCmd(SysTick_Counter_Disable); //关闭计数器

SysTick_CounterCmd(SysTick_Counter_Clear); //清除计数值

}

void TimingDelay_Decrement(void) //递减变量函数,函数名由“stm32f10x_it.c”中的中断响应函数定义好了。

{

if (TimingDelay != 0x00) //检测计数变量是否达到0

{ TimingDelay--; //计数变量递减

}

}

注:建议熟练后使用,所涉及知识和设备太多,新手出错的可能性比较大。新手可用简化的延时函数代替:

void Delay(vu32 nCount) //简单延时函数

{

for(; nCount != 0; nCount--); //循环变量递减计数

}

当延时较长,又不需要精确计时的时候可以使用嵌套循环:

void Delay(vu32 nCount) //简单的长时间延时函数

{int i; //声明内部递减变量

for(; nCount != 0; nCount--) //递减变量计数

{for (i=0; i<0xffff; i++)} //内部循环递减变量计数

}

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭