当前位置:首页 > 单片机 > 单片机
[导读]配置串口包括三部分内容:1. I/O口配置:TXD配置为复用推挽输出(GPIO_Mode_AF_PP),RXD配置为浮空输入 (GPIO_Mode_IN_FLOATING);2. 串口配置:波特率等;3. 中断向量配置:一般用中断方式接收数据。注意事项:1

配置串口包括三部分内容:

1. I/O口配置:TXD配置为复用推挽输出(GPIO_Mode_AF_PP),RXD配置为浮空输入 (GPIO_Mode_IN_FLOATING);

2. 串口配置:波特率等;

3. 中断向量配置:一般用中断方式接收数据。

注意事项:

1. USART1是挂在APB2,使能时钟命令为:

RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE );

其他几个则挂在APB1上,如2口:

RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE );

2. 配置4口和5口的时候,中断名为UART4、UART5,中断入口分别为

UART4_IRQn、UART5_IRQn

对应的中断服务函数为

void UART4_IRQHandler(void)

void UART5_IRQHandler(void)。

5个串口的配置函数和收发数据函数代码:

#include "stm32f10x.h"

#include "misc.h"

#include "stm32f10x_gpio.h"

#include "stm32f10x_usart.h"

void USART1_Configuration(void)

{

GPIO_InitTypeDef GPIO_InitStructure;

USART_InitTypeDef USART_InitStructure;

NVIC_InitTypeDef NVIC_InitStructure;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE );

RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE );

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //USART1 TX;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOA, &GPIO_InitStructure); //端口A;

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //USART1 RX;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入;

GPIO_Init(GPIOA, &GPIO_InitStructure); //端口A;

USART_InitStructure.USART_BaudRate = 9600; //波特率;

USART_InitStructure.USART_WordLength = USART_WordLength_8b; //数据位8位;

USART_InitStructure.USART_StopBits = USART_StopBits_1; //停止位1位;

USART_InitStructure.USART_Parity = USART_Parity_No ; //无校验位;

USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;

//无硬件流控;

USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

//收发模式;

USART_Init(USART1, &USART_InitStructure);//配置串口参数;

NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置中断组,4位抢占优先级,4位响应优先级;

NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; //中断号;

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级;

NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应优先级;

NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

NVIC_Init(&NVIC_InitStructure);

USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);

USART_Cmd(USART1, ENABLE); //使能串口;

}

void USART1_Send_Byte(u8 Data) //发送一个字节;

{

USART_SendData(USART1,Data);

while( USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET );

}

void USART1_Send_String(u8 *Data) //发送字符串;

{

while(*Data)

USART1_Send_Byte(*Data );

}

void USART1_IRQHandler(void) //中断处理函数;

{

u8 res;

if(USART_GetITStatus(USART1, USART_IT_RXNE) == SET) //判断是否发生中断;

{

USART_ClearFlag(USART1, USART_IT_RXNE); //清除标志位;

res=USART_ReceiveData(USART1); //接收数据;

USART1_Send_Byte(res); //用户自定义;

}

}

void USART2_Configuration(void)

{

GPIO_InitTypeDef GPIO_InitStructure;

USART_InitTypeDef USART_InitStructure;

NVIC_InitTypeDef NVIC_InitStructure;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE );

RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE );

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; //USART2 TX;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOA, &GPIO_InitStructure); //端口A;

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3; //USART2 RX;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入;

GPIO_Init(GPIOA, &GPIO_InitStructure); //端口A;

USART_InitStructure.USART_BaudRate = 9600; //波特率;

USART_InitStructure.USART_WordLength = USART_WordLength_8b; //数据位8位;

USART_InitStructure.USART_StopBits = USART_StopBits_1; //停止位1位;

USART_InitStructure.USART_Parity = USART_Parity_No ; //无校验位;

USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;

//无硬件流控;

USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

//收发模式;

USART_Init(USART2, &USART_InitStructure);//配置串口参数;

NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置中断组,4位抢占优先级,4位响应优先级;

NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn; //中断号;

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级;

NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应优先级;

NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

NVIC_Init(&NVIC_InitStructure);

USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);

USART_Cmd(USART2, ENABLE); //使能串口;

}

void USART2_Send_Byte(u8 Data) //发送一个字节;

{

USART_SendData(USART2,Data);

while( USART_GetFlagStatus(USART2, USART_FLAG_TC) == RESET );

}

void USART2_Send_String(u8 *Data) //发送字符串;

{

while(*Data)

USART2_Send_Byte(*Data );

}

void USART2_IRQHandler(void) //中断处理函数;

{

u8 res;

if(USART_GetITStatus(USART2, USART_IT_RXNE) == SET) //判断是否发生中断;

{

USART_ClearFlag(USART2, USART_IT_RXNE); //清除标志位;

res=USART_ReceiveData(USART2); //接收数据;

USART2_Send_Byte(res); //用户自定义;

}

}

void USART3_Configuration(void)

{

GPIO_InitTypeDef GPIO_InitStructure;

USART_InitTypeDef USART_InitStructure;

NVIC_InitTypeDef NVIC_InitStructure;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE );

RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE );

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //USART3 TX;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOB, &GPIO_InitStructure); //端口B;

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11; //USART3 RX;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入;

GPIO_Init(GPIOB, &GPIO_InitStructure); //端口B;

USART_InitStructure.USART_BaudRate = 9600; //波特率;

USART_InitStructure.USART_WordLength = USART_WordLength_8b; //数据位8位;

USART_InitStructure.USART_StopBits = USART_StopBits_1; //停止位1位;

USART_InitStructure.USART_Parity = USART_Parity_No ; //无校验位;

USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;

//无硬件流控;

USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

//收发模式;

USART_Init(USART3, &USART_InitStructure);//配置串口参数;

NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置中断组,4位抢占优先级,4位响应优先级;

NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn; //中断号;

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级;

NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应优先级;

NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

NVIC_Init(&NVIC_InitStructure);

USART_ITConfig(USART3, USART_IT_RXNE, ENABLE);

USART_Cmd(USART3, ENABLE); //使能串口;

}

void USART3_Send_Byte(u8 Data) //发送一个字节;

{

USART_SendData(USART3,Data);

while( USART_GetFlagStatus(USART3, USART_FLAG_TC) == RESET );

}

void USART3_Send_String(u8 *Data) //发送字符串;

{

while(*Data)

USART3_Send_Byte(*Data );

}

void USART3_IRQHandler(void) //中断处理函数;

{

u8 res;

if(USART_GetITStatus(USART3, USART_IT_RXNE) == SET) //判断是否发生中断;

{

USART_ClearFlag(USART3, USART_IT_RXNE); //清除标志位;

res=USART_ReceiveData(USART3); //接收数据;

USART3_Send_Byte(res); //用户自定义;

}

}

void UART4_Configuration(void)

{

GPIO_InitTypeDef GPIO_InitStructure;

USART_InitTypeDef USART_InitStructure;

NVIC_InitTypeDef NVIC_InitStructure;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE );

RCC_APB1PeriphClockCmd(RCC_APB1Periph_UART4, ENABLE );

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //UART4 TX;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOC, &GPIO_InitStructure); //端口C;

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11; //UART4 RX;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入;

GPIO_Init(GPIOC, &GPIO_InitStructure); //端口C;

USART_InitStructure.USART_BaudRate = 9600; //波特率;

USART_InitStructure.USART_WordLength = USART_WordLength_8b; //数据位8位;

USART_InitStructure.USART_StopBits = USART_StopBits_1; //停止位1位;

USART_InitStructure.USART_Parity = USART_Parity_No ; //无校验位;

USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;

//无硬件流控;

USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

//收发模式;

USART_Init(UART4, &USART_InitStructure);//配置串口参数;

NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置中断组,4位抢占优先级,4位响应优先级;

NVIC_InitStructure.NVIC_IRQChannel = UART4_IRQn; //中断号;

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级;

NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应优先级;

NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

NVIC_Init(&NVIC_InitStructure);

USART_ITConfig(UART4, USART_IT_RXNE, ENABLE);

USART_Cmd(UART4, ENABLE); //使能串口;

}

void UART4_Send_Byte(u8 Data) //发送一个字节;

{

USART_SendData(UART4,Data);

while( USART_GetFlagStatus(UART4, USART_FLAG_TC) == RESET );

}

void UART4_Send_String(u8 *Data) //发送字符串;

{

while(*Data)

UART4_Send_Byte(*Data );

}

void UART4_IRQHandler(void) //中断处理函数;

{

u8 res;

if(USART_GetITStatus(UART4, USART_IT_RXNE)

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭