当前位置:首页 > 单片机 > 单片机
[导读]摘要本文介绍设计一个环形队列数据结构以实现串口更稳定的接收消息,并有效防止丢包 。这段时间一直在研究多旋翼飞行器,以及其它的事情,博客好外没更新,再不坚持怕真荒废了哦。在上篇简单实现MAVLink协议的解析,

摘要
本文介绍设计一个环形队列数据结构以实现串口更稳定的接收消息,并有效防止丢包 。

这段时间一直在研究多旋翼飞行器,以及其它的事情,博客好外没更新,再不坚持怕真荒废了哦。

在上篇简单实现MAVLink协议的解析,并演示按照设计好的命令执行对应的事件处理,以及又加入 CRC校验,实现更稳定的通信,但在上文结束时也提到当对一个包进行解析及对应事件处理时,是不能接收新的数据,直到事件处理完成,Msg_Rev.Get 状态设置为 RECEIVING 后方能再接收新的数据。这时,当事件处理需要一定时间,而又有新的数据不断发送过来时,很容易造成数据丢失现象。

如何提高串口通信效率,并避免丢包现象了?

为提高效率,首先想到采用DMA方式,然而考虑下发现,接收的数据包是不固定的;并且即使采用DMA,若MAVLink接收缓存仍设计成只接收一条消息大小,丢包问题仍然还是会有滴。

这样就想有没方法软件来实现,就相到如果开辟一个缓存空间,不断接收的数据都放到那儿,而包的解析处理函数可从这里面依次取出一定数据,来作处理。这样只要设计比较合理,因软件阻塞造成的丢包现象就容易解决了。那么要设计一个怎样的缓存呢 ? 其实很容易想到队列(先进先出的特性),而为了更有效且合理的利用空间,又就会想到环形队列这种数据结构 。

首先是其数据结构设计,以及插入删除操作,不多说,如下代码:

#define MAX_QUEUE_LEN (4096) // 4K
#define RW_OK 0
#define FULL_ERROR 1
#define EMPTY_ERROR 2

typedef uint8_t boolean;

typedef struct
{
u16 MemFrontSendIndex ;
u16 MemRearRecvIndex ;
u16 MemLength ;
u8 MemDataBuf[MAX_QUEUE_LEN];
} Queue_Mem_Struct , * Queue_Mem_Struct_p ;

Queue_Mem_Struct Queue_Recv ;

boolean QueueMemDataInsert(u8 data)
{
if (MAX_QUEUE_LEN == Queue_Recv.MemLength)
{
return FULL_ERROR;
}
else
{
Queue_Recv.MemDataBuf[Queue_Recv.MemRearRecvIndex] = data ;
// if(++Queue_Recv.MemRearRecvIndex >= MAX_QUEUE_LEN){Queue_Recv.MemRearRecvIndex = 0;}
Queue_Recv.MemRearRecvIndex = (Queue_Recv.MemRearRecvIndex + 1) % MAX_QUEUE_LEN;
Queue_Recv.MemLength ++ ;
return RW_OK;
}
}

boolean QueueMemDataDel(u8 *data)
{
if (0 == Queue_Recv.MemLength)
{
return EMPTY_ERROR;
}
else
{
*data = Queue_Recv.MemDataBuf[Queue_Recv.MemFrontSendIndex] ;
Queue_Recv.MemFrontSendIndex = (Queue_Recv.MemFrontSendIndex + 1) % MAX_QUEUE_LEN;
Queue_Recv.MemLength -- ;
return RW_OK;
}
}

这样,只需通过QueueMemDataInsert函数把串口接收的数据依次填充到缓冲区Queue_Recv.MemDataBuf中去。而在处理时调用QueueMemDataDel函数取出对应个数的数据来处理。这样就避免整个处理过程中无法同时接收数据而产生丢包的问题。当然此时要保证缓冲区的数据及时处理完,否则,尤其当数据量很大时队列填充满后,又会造成数据无法再填充进来。

另外至此又会发现,如上设计可结合采用DMA方式。设计的好的话,可以进一步大幅度提升STM32利用率及系统运行效率!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭