当前位置:首页 > 单片机 > 单片机
[导读]在PIC的单片机中有多种型号有内部RC振荡器的功能,从而省去了晶振,不但节省了成本,并且我们还多了两个IO端口可以使用。但是,由于RC振荡器中电阻、电容的离散性很大,因此,在有内部RC振荡器的单片机中,它的内部R

在PIC的单片机中有多种型号有内部RC振荡器的功能,从而省去了晶振,不但节省了成本,并且我们还多了两个IO端口可以使用。

但是,由于RC振荡器中电阻、电容的离散性很大,因此,在有内部RC振荡器的单片机中,它的内部RAM中都会有一个名为OSCCAL的校准寄存器,通过置入不同的数值来微调RC振荡器的振荡频率。并且,单片机的程序存储器中,也会有一个特殊的字来储存工厂生产时测得的校准值。下面我以常用的12C508A和12F629为例加以说明。

12C508A的复位矢量是程序的最高字0x1FF,这个字节生产商已经固定的烧写为MOVLW 0xXX,指令执行后,W寄存器中即为校准值XX,当我们需要校准时,那么,在紧接着的地址0x0应该是一条这样的指令:MOVWF OSCCAL。接下去RC振荡器就会以标准的振荡频率运行了。

12F629的校准值也存放在最高字--0x3FF中,内容是RETLW 0xXX,但它的复位矢量却是0x0。这样,在我们需要校准RC振荡器时,在初始化过程中要加上下面两句:

CALL 0x3ff
MOVWF OSCCAL

当然,你还要注意寄存器的块选择位。

以前,我在做项目时,没太注意这个问题,这是因为在使用12C508A时,HI-TECH在进行编译时已经偷偷地替我们做了这项工作。它会在程序的0x0处自动加一条MOVWF OSCCAL。用12F629做接收解码代替2272时也没发生什么问题,但是在用被它作滚动码解码器时却发现接收距离的离散性很大。经多次试验终于找出是没对振荡器的振荡频率进行校正所至。

因此,需要另外编写用于校正的语句,我用了两种方法来实现这个目的:

1、用内嵌汇编的形式

#asm //此段汇编程序用于将位于程序段3FFH的
call 3ffh //内部RC振荡器的校准值放入校准寄存器,
bsf _STATUS,5 //在进行C语言调试时应屏蔽这段程序
movwf _OSCCAL
#endasm

2、用C语言标准形式

const unsigned char cs @ 0x3ff; //在函数体外
...
OSCCAL=cs; //仿真时屏蔽此句

用这两种方法都有一个小缺陷--仿真时,程序无法运行,这是由于C编译器并没有为我们在0x3FF放置一条RETLW 0xXX的语句。因此,程序运行到这里之后,并没有把一个常数(校准值)放入W寄存器然后返回,而是继续执行这条语句的下一句--0x0及其之后的程序,也就是说程序到此就乱了。因此如程序后面注释所示,在仿真时,应先屏蔽这几句程序。在程序调试完成后,需要烧写时,把注释符去掉,再编译一次就可以了。

我还有一种想法,不用屏蔽语句,那就是用函数来实现,就是在0x3FF起建立一个函数,函数体内只有一条语句,如下:

char jz()
{
return 0;
}

当然,还要考虑C函数返回时,一定会选择寄存器0,实际上这个函数的起始地址应小于0x3FF。但是我找了我所能找到的参考资料,并上网找了多次,也没找到为函数绝对定位的方法,希望有知道的朋友指点一下。

还有,12C508A是一次性编程的,并且0x1FF处的内容,我们是无法改变的,也就是说你在此处编写任何指令,编程器都不会为你烧写,或者说即使烧写了也不会改变其中的内容。

可12F629是FLASH器件,可多次编程,如果你没有故意选择,正品的编程器(如Microchip的PICSTART PLUS)是不会对存有校准值的程序空间进行编程的。即使你无意中对这个程序空间进行了编程,你也可以用一条RETLW 0xXX放在0x3FF处再编程一次就可以了,但这个XX值可能是不正确的,需经实验确定(请参考后面说明)。

为了检验OSCCAL的值对振荡器频率的影响,特编写了下面一个小程序进行验证:

#include
//*********************************************************
__CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS & BOREN & PROTECT & CPD);
//内部RC振荡器普通IO口;无效看门狗;上电延时;内部复位;掉电复位;代码保护;数据保护
//*********************************************************
#define out GPIO0 //定义输出端
#define jc GPIO3 //定义检测端
//*********************************************************
void interrupt zd(); //声明中断函数
//主函数***************************************************
void main()
{
CMCON=7;
OPTION=0B00000011; //分频比为1:16,
TRISIO=0B11111110;
GPIO=0B00000000;
WPU=0;
T0IF=0;
GIE=1;
T0IE=1;
while(1){
if(jc)OSCCAL=0xFF;
else OSCCAL=0;
}
}
//中断函数*************************************************
void interrupt zd()
{
T0IF=0;
out=!out;
}

程序其实很简单,就是在中断中让out脚的电平翻转,翻转的时间为4096个指令周期,电平周期为8192个指令周期。而指令的周期又决定于RC时钟频率。在主程序中,不断的检测JC端口的电平,然后根据此端口电平的值修改OSCCAL寄存器的值。当然,最后从OUT脚的波形周期上反映出了OSCCAL寄存器的值改变。

经用示波器测量(抱歉,手边没有频率计),JC端接地时,OUT端的电平周期为9.5毫秒左右;而JC端接正电源时,OUT端的电平周期为6毫秒左右。也就是说OSCCAL的值越大,单片机的时钟频率越高。并且,这个变化范围是很大的,因此,如果使用PIC单片机的内部RC振荡器时,对其振荡频率进行校正是十分必要的。这也是我在做滚动码接收解码器时,产品离散性很大的原因。望大家以后使用内部RC振荡器时能够注意到此点。

但还有一点要注意,即使你对RC振荡器进行了校正,你也别指望这个4MHz的RC振荡器肯定会很标准,实际上它还是一个RC振荡器,它的振荡频率是电压、温度的函数,也就是说这个振荡频率会随着电压和温度的变化而变化,只是经校正后的值更接近4MHz罢了,这在产品开发的一开始就要注意的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭