当前位置:首页 > 单片机 > 单片机
[导读]PCF8591 的通信接口是 I2C,那么编程肯定是要符合这个协议的。单片机对 PCF8591 进行初始化,一共发送三个字节即可。第一个字节,和 EEPROM 类似,是器件地址字节,其中 7 位代表地址,1 位代表读写方向。地址高 4 位

PCF8591 的通信接口是 I2C,那么编程肯定是要符合这个协议的。单片机对 PCF8591 进行初始化,一共发送三个字节即可。第一个字节,和 EEPROM 类似,是器件地址字节,其中 7 位代表地址,1 位代表读写方向。地址高 4 位固定是 0b1001,低三位是 A2,A1,A0,这三位我们电路上都接了 GND,因此也就是 0b000,如图 17-5 所示。

图 17-5 PCF8591 地址字节

图 17-5 PCF8591 地址字节


发送到 PCF8591 的第二个字节将被存储在控制寄存器,用于控制 PCF8591 的功能。其中第 3 位和第 7 位是固定的 0,另外 6 位各自有各自的作用,如图 17-6 所示,我逐一介绍。

图17-6 PCF8591 控制字节

图17-6 PCF8591 控制字节


控制字节的第 6 位是 DA 使能位,这一位置 1 表示 DA 输出引脚使能,会产生模拟电压输出功能。第 4 位和第 5 位可以实现把 PCF8591 的 4 路模拟输入配置成单端模式和差分模式,单端模式和差分模式的区别,我们在 17.5 节有介绍,这里大家只需要知道这两位是配置 AD输入方式的控制位即可,如图 17-7 所示。

图 17-7 PCF8591 模拟输入配置方式

图 17-7 PCF8591 模拟输入配置方式


控制字节的第 2 位是自动增量控制位,自动增量的意思就是,比如我们一共有 4 个通道,当我们全部使用的时候,读完了通道 0,下一次再读,会自动进入通道 1 进行读取,不需要我们指定下一个通道,由于 A/D 每次读到的数据,都是上一次的转换结果,所以同学们在使用自动增量功能的时候,要特别注意,当前读到的是上一个通道的值。为了保持程序的通用性,我们的代码没有使用这个功能,直接做了一个通用的程序。


控制字节的第 0 位和第 1 位就是通道选择位了,00、01、10、11 代表了从 0 到 3 的一共4 个通道选择。


发送给 PCF8591 的第三个字节 D/A 数据寄存器,表示 D/A 模拟输出的电压值。D/A 模拟我们一会介绍,大家知道这个字节的作用即可。我们如果仅仅使用 A/D 功能的话,就可以不发送第三个字节。


下面我们用一个程序,把 AIN0、AIN1、AIN3 测到的电压值显示在液晶上,同时大家可以转动电位器,会发现 AIN0 的值发生变化。

/***************************Lcd1602.c 文件程序源代码*****************************/

(此处省略,可参考之前章节的代码)

/*****************************I2C.c 文件程序源代码*******************************/

(此处省略,可参考之前章节的代码)

/*****************************main.c 文件程序源代码******************************/

#include

bit flag300ms = 1; //300ms 定时标志

unsigned char T0RH = 0; //T0 重载值的高字节

unsigned char T0RL = 0; //T0 重载值的低字节

void ConfigTimer0(unsigned int ms);

unsigned char GetADCValue(unsigned char chn);

void ValueToString(unsigned char *str, unsigned char val);

extern void I2CStart();

extern void I2CStop();

extern unsigned char I2CReadACK();

extern unsigned char I2CReadNAK();

extern bit I2CWrite(unsigned char dat);

extern void InitLcd1602();

extern void LcdShowStr(unsigned char x, unsigned char y, unsigned char *str);

void main(){

unsigned char val;

unsigned char str[10];

EA = 1; //开总中断

ConfigTimer0(10); //配置 T0 定时 10ms

InitLcd1602(); //初始化液晶

LcdShowStr(0, 0, "AIN0 AIN1 AIN3"); //显示通道指示

while (1){

if (flag300ms){

flag300ms = 0; //显示通道 0 的电压

val = GetADCValue(0); //获取 ADC 通道 0 的转换值

ValueToString(str, val); //转为字符串格式的电压值

LcdShowStr(0, 1, str); //显示到液晶上

//显示通道 1 的电压

val = GetADCValue(1);

ValueToString(str, val);

LcdShowStr(6, 1, str);

//显示通道 3 的电压

val = GetADCValue(3);

ValueToString(str, val);

LcdShowStr(12, 1, str);

}

}

}

/* 读取当前的 ADC 转换值,chn-ADC 通道号 0~3 */

unsigned char GetADCValue(unsigned char chn){

unsigned char val;

I2CStart();

if (!I2CWrite(0x48<<1)){ //寻址 PCF8591,如未应答,则停止操作并返回 0

I2CStop();

return 0;

}

I2CWrite(0x40|chn); //写入控制字节,选择转换通道

I2CStart();

I2CWrite((0x48<<1)|0x01); //寻址 PCF8591,指定后续为读操作

I2CReadACK(); //先空读一个字节,提供采样转换时间

val = I2CReadNAK(); //读取刚刚转换完的值

I2CStop();

return val;

}

/* ADC 转换值转为实际电压值的字符串形式,str-字符串指针,val-AD 转换值 */

void ValueToString(unsigned char *str, unsigned char val){

//电压值=转换结果*2.5V/255,式中的 25 隐含了一位十进制小数

val = (val*25) / 255;

str[0] = (val/10) + '0'; //整数位字符

str[1] = '.'; //小数点

str[2] = (val%10) + '0'; //小数位字符

str[3] = 'V'; //电压单位

str[4] = ''; //结束符

}

/* 配置并启动 T0,ms-T0 定时时间 */

void ConfigTimer0(unsigned int ms){

unsigned long tmp; //临时变量

tmp = 11059200 / 12; //定时器计数频率

tmp = (tmp * ms) / 1000; //计算所需的计数值

tmp = 65536 - tmp; //计算定时器重载值

tmp = tmp + 12; //补偿中断响应延时造成的误差

T0RH = (unsigned char)(tmp>>8); //定时器重载值拆分为高低字节

T0RL = (unsigned char)tmp;

TMOD &= 0xF0; //清零 T0 的控制位

TMOD |= 0x01; //配置 T0 为模式 1

TH0 = T0RH; //加载 T0 重载值

TL0 = T0RL;

ET0 = 1; //使能 T0 中断

TR0 = 1; //启动 T0

}

/* T0 中断服务函数,执行 300ms 定时 */

void InterruptTimer0() interrupt 1{

static unsigned char tmr300ms = 0;

TH0 = T0RH; //重新加载重载值

TL0 = T0RL;

tmr300ms++;

if (tmr300ms >= 30){ //定时 300ms

tmr300ms = 0;

flag300ms = 1;

}

}

细心阅读程序的同学会发现,程序在进行 A/D 读取数据的时候,共使用了两条程序去读了 2 个字节:I2CReadACK(); val = I2CReadNAK(); PCF8591 的转换时钟是 I2C 的 SCL,8 个SCL 周期完成一次转换,所以当前的转换结果总是在下一个字节的 8 个 SCL 上才能读出,因此我们这里第一条语句的作用是产生一个整体的 SCL 时钟提供给 PCF8591 进行 A/D 转换,第二次是读取当前的转换结果。如果我们只使用第二条语句的话,每次读到的都是上一次的转换结果。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭